2D case - Table 2#
Two-parameter 2D problem - Relative error with regard to the FEM solution. Pre-trained.
Libraries import#
import sys
import torch
import torch.nn as nn
from neurom.HiDeNN_PDE import MeshNN, NeuROM, MeshNN_2D, MeshNN_1D
import neurom.src.Pre_processing as pre
from neurom.src.PDE_Library import Strain, Stress,VonMises_plain_strain
from neurom.src.Training import Training_NeuROM_multi_level
import neurom.Post.Plots as Pplot
import time
import os
import torch._dynamo as dynamo
from importlib import reload
import tomllib
import numpy as np
import argparse
torch.manual_seed(0)
Load the config file#
Configuration_file = 'Configurations/config_2D_ROM.toml'
with open(Configuration_file, mode="rb") as file:
config = tomllib.load(file)
Definition of the space domain and mechanical proprieties of the structure#
The initial Material parameters, the geometry, mesh and the boundary conditions are set.
# Material parameters definition
Mat = pre.Material( flag_lame = False, # If True should input lmbda and mu instead of E and nu
coef1 = config["material"]["E"], # Young Modulus
coef2 = config["material"]["nu"] # Poisson's ratio
)
MaxElemSize2D = config["interpolation"]["MaxElemSize2D"] = 0.125
# Create mesh object
MaxElemSize = pre.ElementSize(
dimension = config["interpolation"]["dimension"],
L = config["geometry"]["L"],
order = config["interpolation"]["order"],
np = config["interpolation"]["np"],
MaxElemSize2D = config["interpolation"]["MaxElemSize2D"]
)
Excluded = []
Mesh_object = pre.Mesh(
config["geometry"]["Name"], # Create the mesh object
MaxElemSize,
config["interpolation"]["order"],
config["interpolation"]["dimension"]
)
Mesh_object.AddBorders(config["Borders"]["Borders"])
Mesh_object.AddBCs( # Include Boundary physical domains infos (BCs+volume)
config["geometry"]["Volume_element"],
Excluded,
config["DirichletDictionryList"]
)
Mesh_object.MeshGeo() # Mesh the .geo file if .msh does not exist
Mesh_object.ReadMesh()
Mesh_object.ExportMeshVtk()
Parametric study definition#
The hypercube describing the parametric domain used for the tensor decomposition is set-up here
ParameterHypercube = torch.tensor([ [ config["parameters"]["para_1_min"],
config["parameters"]["para_1_max"],
config["parameters"]["N_para_1"]],
[ config["parameters"]["para_2_min"],
config["parameters"]["para_2_max"],
config["parameters"]["N_para_2"]]])
Initialisation of the surrogate model#
ROM_model = NeuROM( # Build the surrogate (reduced-order) model
Mesh_object,
ParameterHypercube,
config,
config["solver"]["n_modes_ini"],
config["solver"]["n_modes_max"]
)
Training the model#
# ROM_model.Freeze_Mesh() # Set space mesh coordinates as untrainable
# ROM_model.Freeze_MeshPara() # Set parameters mesh coordinates as untrainable
# ROM_model.TrainingParameters(
# loss_decrease_c = config["training"]["loss_decrease_c"],
# Max_epochs = config["training"]["n_epochs"],
# learning_rate = config["training"]["learning_rate"]
# )
# ROM_model.train() # Put the model in training mode
# ROM_model, Mesh_object = Training_NeuROM_multi_level(ROM_model,config, Mat)
ROM_model.load_state_dict(torch.load('Pretrained_models/2D_ROM', weights_only=False))
Error computed at the nodes#
Compute the error of the displacement with regard to the reference solution. Error evaluated at the nodes
eval_coord_file = "GroundTruth/nodal_coordinates.npy"
E_vect = [0.0038, 0.0038, 0.00314, 0.00409, 0.00409, 0.00462, 0.00501, 0.00675]
theta_vect = [1.57, 4.21, 0, 3.7, 3.13, 0.82, 2.26, 5.45]
error_vect = []
for i in range(len(E_vect)):
num_displ_file = "GroundTruth/nodal_num_displacement_E="+str(E_vect[i])+"_theta="+str(theta_vect[i])+".npy"
eval_coord = torch.tensor(np.load(eval_coord_file), dtype=torch.float64, requires_grad=True)
num_displ = torch.tensor(np.load(num_displ_file))
theta = torch.tensor([theta_vect[i]],dtype=torch.float64)
theta = theta[:,None]
E = torch.tensor([E_vect[i]],dtype=torch.float64)
E = E[:,None]
Para_coord_list = nn.ParameterList((E,theta))
ROM_model.eval() # Put model in evaluation mode
u_sol = ROM_model(eval_coord,Para_coord_list) # Evaluate model
u_sol_x = u_sol[0,:,0,0]
u_sol_y = u_sol[1,:,0,0]
u_ref_x = num_displ[:,0]
u_ref_y = num_displ[:,1]
u_ref_tot = torch.hstack((u_ref_x,u_ref_y))
u_sol_tot = torch.hstack((u_sol_x,u_sol_y))
error_u_tot = (torch.linalg.vector_norm(u_sol_tot - u_ref_tot)/torch.linalg.vector_norm(u_ref_tot)).item()
error_vect.append(error_u_tot)
error_vect
[0.0011179374774135927,
0.0008721099977561525,
0.0014990741132987406,
0.008614060035762679,
0.00931683192143615,
0.0027197109293198856,
0.005349891791602745,
0.0012339046413615078]