2D case - Figures 13#
Two-parameter 2D problem - Visualisation of the model evaluated for three parametric configurations. Saint Venant-Kirchhoff behaviour.
Libraries import#
import sys
import torch
import torch.nn as nn
from neurom.HiDeNN_PDE import MeshNN, NeuROM, MeshNN_2D, MeshNN_1D
import neurom.src.Pre_processing as pre
from neurom.src.PDE_Library import Strain, Stress,VonMises_plain_strain
from neurom.src.Training import Training_NeuROM_multi_level
import neurom.Post.Plots as Pplot
import time
import os
import torch._dynamo as dynamo
from importlib import reload
import tomllib
import numpy as np
import argparse
torch.manual_seed(9975355953847005664)
* WARNING: could not load tikzplotlib
<torch._C.Generator at 0x11a7016d0>
Load the config file#
Configuration_file = 'Configurations/config_2D_ROM_SVK.toml'
with open(Configuration_file, mode="rb") as file:
config = tomllib.load(file)
Definition of the space domain and mechanical proprieties of the structure#
The initial Material parameters, the geometry, mesh and the boundary conditions are set.
# Material parameters definition
Mat = pre.Material( flag_lame = False, # If True should input lmbda and mu instead of E and nu
coef1 = config["material"]["E"], # Young Modulus
coef2 = config["material"]["nu"] # Poisson's ratio
)
# MaxElemSize2D = config["interpolation"]["MaxElemSize2D"] = 0.125
# Create mesh object
MaxElemSize = pre.ElementSize(
dimension = config["interpolation"]["dimension"],
L = config["geometry"]["L"],
order = config["interpolation"]["order"],
np = config["interpolation"]["np"],
MaxElemSize2D = config["interpolation"]["MaxElemSize2D"]
)
Excluded = []
Mesh_object = pre.Mesh(
config["geometry"]["Name"], # Create the mesh object
MaxElemSize,
config["interpolation"]["order"],
config["interpolation"]["dimension"]
)
Mesh_object.AddBorders(config["Borders"]["Borders"])
Mesh_object.AddBCs( # Include Boundary physical domains infos (BCs+volume)
config["geometry"]["Volume_element"],
Excluded,
config["DirichletDictionryList"]
)
Mesh_object.MeshGeo() # Mesh the .geo file if .msh does not exist
Mesh_object.ReadMesh()
Mesh_object.ExportMeshVtk()
_ _ ____ ___ __ __
| \ | | ___ _ _| _ \ / _ \| \/ |
| \| |/ _ \ | | | |_) | | | | |\/| |
| |\ | __/ |_| | _ <| |_| | | | |
|_| \_|\___|\__,_|_| \_\ ___/|_| |_|
3.1.2
************ MESH READING COMPLETE ************
* Dimension of the problem: 2D
* Elements type: t3: 3-node triangle
* Number of Dofs: 224
Parametric study definition#
The hypercube describing the parametric domain used for the tensor decomposition is set-up here
ParameterHypercube = torch.tensor([ [ config["parameters"]["para_1_min"],
config["parameters"]["para_1_max"],
config["parameters"]["N_para_1"]],
[ config["parameters"]["para_2_min"],
config["parameters"]["para_2_max"],
config["parameters"]["N_para_2"]]])
Initialisation of the surrogate model#
ROM_model = NeuROM( # Build the surrogate (reduced-order) model
Mesh_object,
ParameterHypercube,
config,
config["solver"]["n_modes_ini"],
config["solver"]["n_modes_max"]
)
Training the model#
ROM_model.Freeze_Mesh() # Set space mesh coordinates as untrainable
ROM_model.Freeze_MeshPara() # Set parameters mesh coordinates as untrainable
ROM_model.TrainingParameters(
loss_decrease_c = config["training"]["loss_decrease_c"],
Max_epochs = config["training"]["n_epochs"],
learning_rate = config["training"]["learning_rate"]
)
ROM_model.train() # Put the model in training mode
ROM_model, Mesh_object = Training_NeuROM_multi_level(ROM_model,config, Mat)
# ROM_model.load_state_dict(torch.load('Pretrained_models/2D_ROM', weights_only=False))
Pyvista plots#
Plot the solution
import pyvista as pv
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.backends.backend_pdf import PdfPages
from matplotlib import cm
from matplotlib.colorbar import ColorbarBase
from matplotlib.colors import Normalize
import torch.nn as nn
pv.global_theme.font.family = 'times' # Arial, courier or times
pv.global_theme.font.size = 40
pv.global_theme.font.title_size = 40
pv.global_theme.font.label_size = 40
pv.global_theme.font.fmt = '%.2e'
filename = 'Geometries/'+Mesh_object.name_mesh # Load mesh (used for projecting the solution only)
mesh = pv.read(filename) # Create pyvista mesh
Nodes = np.stack(Mesh_object.Nodes)
import matplotlib
matplotlib.rcParams["font.size"] = "25"
Mesh_object.NNodes
597
E_vect = [0.00038,0.0001,0.000462]
theta_vect = [4.21,0,0.82]
ROM_model.Space_modes[0].mesh.Nodes
eval_coord = torch.tensor(ROM_model.Space_modes[0].mesh.Nodes, dtype=torch.float64, requires_grad=True)[:,1:3]
First parameters set#
#Fig a)
name = 'SVK_a'
theta_i = theta_vect[0]
E_i = E_vect[0]
print(f'E = {E_i}, theta = {theta_i}, theta_deg = {theta_i*180/np.pi}')
theta = torch.tensor([theta_i],dtype=torch.float64)
theta = theta[:,None]
E = torch.tensor([E_i],dtype=torch.float64)
E = E[:,None]
Para_coord_list = nn.ParameterList((E,theta))
ROM_model.eval() # Put model in evaluation mode
u_sol = ROM_model(eval_coord,Para_coord_list) # Evaluate model
u = torch.stack([(u_sol[0,:,0,0]),(u_sol[1,:,0,0]),torch.zeros(u_sol[0,:,0,0].shape[0])],dim=1)
mesh.point_data['U'] = u.data
mesh.point_data['U_norm'] = torch.norm(u, dim=1).data
mesh.point_data['Ux'] = u[:,0].data
mesh.point_data['Uy'] = u[:,1].data
mesh.point_data['Uz'] = u[:,2].data
## Result a)
plotter = pv.Plotter(off_screen=True)
plotter.add_mesh(mesh.warp_by_vector(vectors="U",factor=1,inplace=False), scalars='U_norm', cmap='viridis', show_scalar_bar=False)
plotter.view_xy()
import matplotlib
image = plotter.screenshot(transparent_background=True,return_img=True, window_size=[3200, 1800]) # Return image as array for Matplotlib
with PdfPages('Results/Fig_pyvista_'+name+'.pdf') as pdf:
fig, ax = plt.subplots(figsize=(8, 9), dpi = 300)
plt.imshow(image)
plt.xlim(900, 2500)
plt.ylim(1500,250)
# ax.imshow(image)
plt.axis('off')
# fig.subplots_adjust(right=1)
cbar_ax = fig.add_axes([0.81, 0.25, 0.03, 0.5])
# Normalize scalar field values for the color bar
norm = Normalize(vmin=mesh.point_data['U_norm'].min(), vmax=mesh.point_data['U_norm'].max())
# cmap = cm.get_cmap('viridis')
cmap = matplotlib.colormaps['viridis']
# Add a color bar based on the normalization and the colormap
cbar = ColorbarBase(cbar_ax, cmap=cmap, norm=norm)
cbar.set_label('Displacement (mm)', fontsize=25)
cbar.formatter.set_powerlimits((-2, 2)) # Use scientific notation for ticks outside this range
cbar.update_ticks() # Update the ticks after setting the formatter
# Save the figure as a vectorized PDF
pdf.savefig(fig,bbox_inches = 'tight',pad_inches = 0)
plt.show(fig)
plt.close(fig)
E = 0.00038, theta = 4.21, theta_deg = 241.21523175007655
Second parameters set#
#Fig b)
name = 'SVK_b'
theta_i = theta_vect[1]
E_i = E_vect[1]
print(f'E = {E_i}, theta = {theta_i}, theta_deg = {theta_i*180/np.pi}')
theta = torch.tensor([theta_i],dtype=torch.float64)
theta = theta[:,None]
E = torch.tensor([E_i],dtype=torch.float64)
E = E[:,None]
Para_coord_list = nn.ParameterList((E,theta))
ROM_model.eval() # Put model in evaluation mode
u_sol = ROM_model(eval_coord,Para_coord_list) # Evaluate model
u = torch.stack([(u_sol[0,:,0,0]),(u_sol[1,:,0,0]),torch.zeros(u_sol[0,:,0,0].shape[0])],dim=1)
mesh.point_data['U'] = u.data
mesh.point_data['U_norm'] = torch.norm(u, dim=1).data
mesh.point_data['Ux'] = u[:,0].data
mesh.point_data['Uy'] = u[:,1].data
mesh.point_data['Uz'] = u[:,2].data
## Result b)
plotter = pv.Plotter(off_screen=True)
plotter.add_mesh(mesh.warp_by_vector(vectors="U",factor=1,inplace=False), scalars='U_norm', cmap='viridis', show_scalar_bar=False)
plotter.view_xy()
import matplotlib
image = plotter.screenshot(transparent_background=True,return_img=True, window_size=[3200, 1800]) # Return image as array for Matplotlib
with PdfPages('Results/Fig_pyvista_'+name+'.pdf') as pdf:
fig, ax = plt.subplots(figsize=(8, 9), dpi = 300)
plt.imshow(image)
plt.xlim(900, 2500)
plt.ylim(1500,250)
# ax.imshow(image)
plt.axis('off')
# fig.subplots_adjust(right=1)
cbar_ax = fig.add_axes([0.81, 0.25, 0.03, 0.5])
# Normalize scalar field values for the color bar
norm = Normalize(vmin=mesh.point_data['U_norm'].min(), vmax=mesh.point_data['U_norm'].max())
# cmap = cm.get_cmap('viridis')
cmap = matplotlib.colormaps['viridis']
# Add a color bar based on the normalization and the colormap
cbar = ColorbarBase(cbar_ax, cmap=cmap, norm=norm)
cbar.set_label('Displacement (mm)', fontsize=25)
cbar.formatter.set_powerlimits((-2, 2)) # Use scientific notation for ticks outside this range
cbar.update_ticks() # Update the ticks after setting the formatter
# Save the figure as a vectorized PDF
pdf.savefig(fig,bbox_inches = 'tight',pad_inches = 0)
plt.show(fig)
plt.close(fig)
E = 0.0001, theta = 0, theta_deg = 0.0
Third parameters set#
#Fig c)
name = 'SVK_c'
theta_i = theta_vect[2]
E_i = E_vect[2]
print(f'E = {E_i}, theta = {theta_i}, theta_deg = {theta_i*180/np.pi}')
theta = torch.tensor([theta_i],dtype=torch.float64)
theta = theta[:,None]
E = torch.tensor([E_i],dtype=torch.float64)
E = E[:,None]
Para_coord_list = nn.ParameterList((E,theta))
ROM_model.eval() # Put model in evaluation mode
u_sol = ROM_model(eval_coord,Para_coord_list) # Evaluate model
u = torch.stack([(u_sol[0,:,0,0]),(u_sol[1,:,0,0]),torch.zeros(u_sol[0,:,0,0].shape[0])],dim=1)
mesh.point_data['U'] = u.data
mesh.point_data['U_norm'] = torch.norm(u, dim=1).data
mesh.point_data['Ux'] = u[:,0].data
mesh.point_data['Uy'] = u[:,1].data
mesh.point_data['Uz'] = u[:,2].data
## Result c)
plotter = pv.Plotter(off_screen=True)
plotter.add_mesh(mesh.warp_by_vector(vectors="U",factor=1,inplace=False), scalars='U_norm', cmap='viridis', show_scalar_bar=False)
plotter.view_xy()
import matplotlib
image = plotter.screenshot(transparent_background=True,return_img=True, window_size=[3200, 1800]) # Return image as array for Matplotlib
with PdfPages('Results/Fig_pyvista_'+name+'.pdf') as pdf:
fig, ax = plt.subplots(figsize=(8, 9), dpi = 300)
plt.imshow(image)
plt.xlim(900, 2500)
plt.ylim(1500,250)
# ax.imshow(image)
plt.axis('off')
# fig.subplots_adjust(right=1)
cbar_ax = fig.add_axes([0.81, 0.25, 0.03, 0.5])
# Normalize scalar field values for the color bar
norm = Normalize(vmin=mesh.point_data['U_norm'].min(), vmax=mesh.point_data['U_norm'].max())
# cmap = cm.get_cmap('viridis')
cmap = matplotlib.colormaps['viridis']
# Add a color bar based on the normalization and the colormap
cbar = ColorbarBase(cbar_ax, cmap=cmap, norm=norm)
cbar.set_label('Displacement (mm)', fontsize=25)
cbar.formatter.set_powerlimits((-2, 2)) # Use scientific notation for ticks outside this range
cbar.update_ticks() # Update the ticks after setting the formatter
# Save the figure as a vectorized PDF
pdf.savefig(fig,bbox_inches = 'tight',pad_inches = 0)
plt.show(fig)
plt.close(fig)
E = 0.000462, theta = 0.82, theta_deg = 46.9825392007275