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Titre : Vers une Méthode de Réduction de Modèles Optimisée pour le Traitement d’un GrandNombre de Simulations en Dynamique Non-linéaireMots clés : Réduction de modèle, Dynamique, Endommagement, Non-linéarité, LATIN, PGD
Résumé : Lorsque l’on cherche à prédire la pro-babilité de défaillance d’une structure soumiseà un chargement incertain, il est nécessaire deréaliser un grand nombre de simulations hau-tement non-linéaires, jusqu’à la ruine, corres-pondant à une large famille de sollicitationsplausibles. Il est alors nécessaire de travailler àdiminuer le coût computationnel de ces études.Aussi, cette thèse propose une stratégie vi-sant à résoudre efficacement un grand nombrede problèmes de dynamique non-linéaire enbasses fréquences. Cette stratégie repose surl’utilisation d’un solveur efficace capable de ré-soudre une partie des équations du problèmeen utilisant la méthode de réduction de mo-dèles PGD dans le domaine fréquentiel. Cetteapproche permet de réduire le nombre de pro-blèmes globaux en espace à résoudre, tout enexploitant pleinement les architectures paral-lèles contemporaines lors de l’intégration dela composante temporelle des équations demouvement. Une attention particulière a étéportée à la minimisation des phénomènes deGibbs dans les situations où la structure ne re-vient pas à son état initial (phénomènes irréver-

sibles, régime transitoire, etc.) et pour lesquelsla solution n’est donc pas périodique. À cettefin, uneméthode reposant sur l’amortissementartificiel est proposée.Le second aspect de cette méthodologiemulti-requêtes consiste à exploiter les donnéesissues des calculs déjà effectués pour accélérerles calculs suivants, diminuant ainsi le tempsde calcul de l’étude globale. Afin de maximi-ser les bénéfices d’une telle approche, une mé-thode robuste et systématique a été dévelop-pée pour déterminer l’ordre dans lequel les dif-férentes simulations doivent être enchaînées.L’ensemble de la méthode est adaptée à uncadre dans lequel les nombreux chargementssont non paramétrés. Aussi, le choix des don-nées précédentes à réutiliser ainsi que le choixde l’ordre pour la séquence des calculs s’ap-puient sur un indicateur basé sur la physique etne nécessitent pas une paramétrisation préa-lable des chargements imposés à la structure.La méthode a montré des gains en temps decalcul allant jusqu’à un facteur quatre et desgains en stockage mémoire allant jusqu’à unfacteur vingt.





Title : Towards an optimal multi-query framework based on model-order reduction for non-linear dynamicsKeywords : Reduced-order modelling, Dynamics, Non-linear, Damage, LATIN, PGD
Abstract : Predicting the probability of failurefor a structure subjected to uncertain loadingconditions requires conducting a large numberof highly non-linear simulations, up to structu-ral failure, across a wide range of plausible loa-dings.in order tomake failure prediction readilyaccessible, it is crucial to reduce the numericalcost of these studies.This thesis presents a strategy for efficientlysolving numerous low-frequency non-linear dy-namic problems. The proposed strategy relieson an efficient solver to find solutions to part ofthe problem’s equations using the Proper Ge-neralised Decomposition (PGD) model reduc-tion method in the frequency domain. This mi-nimises the number of global spatial problemsto be solved while utilising current parallel ar-chitectures for handling the temporal part ofthe motion equations. Particular attention hasbeen paid to mitigating Gibbs phenomena incases where the structure does not return to itsinitial state (irreversible phenomena, transient

regimes, etc.), and hence, the solution is notperiodic. To address this, an artificial damping-based method is proposed.The second aspect of the methodology in-volves utilising data from previously conduc-ted calculations to speed up subsequent com-putations, thereby reducing the overall study’scomputation time. To maximise the benefits ofsuch an approach, a robust and systematic me-thod is employed to determine the order inwhich different simulations are chained toge-ther. The entire method is suited to a frame-work where the numerous loadings are non-parametric. Therefore, the choice of reusingprevious data and the sequence of calculationsrely on a physics-based indicator and do not re-quire prior parametrisation of the loadings im-posed on the structure. The method has de-monstrated time savings of up to a factor ofthree and memory storage savings of up to afactor of twenty.
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Introduction

Nature cannot be fooled.

Richard Feynman

The combustion of fossil fuels over the course of more than a century has already led to a

global warming of 1.1°C above pre-industrial levels. This discernible increase in temperature

is illustrated in Figure 1 from [IPCC, 2021], which strongly demonstrates the substantial rise in

global mean temperature over the past century, attributing this significant change to human

activities.

Based on this existing warming, predictions can be made regarding its future trajectory.

The Intergovernmental Panel on Climate Change (IPCC) made predictions based on five

different scenarios [IPCC, 2021], which circumscribe a range of possibilities, including both

pessimistic and optimistic outlooks concerning various sources of emissions. Figure 2 from

[Chen et al., 2021] reveals that only the two most stringent scenarios enable reaching the

target of limiting global warming to 1.5°C, as established by the Paris Agreement during the

COP21 of 2015.

Present and future global warming is not without consequences. The Working Group

II Contribution to the Sixth Assessment Report of the IPCC emphasises the current disas-

trous consequences of climate change and predicts further deterioration in Earth’s living

conditions in the absence of robust adaptation measures [IPCC, 2022]. Most ‘reasons for

concern’ already exhibit a significant impact at the current 1.1°C of global warming, and their

severity is expected to worsen. Moreover, the adverse effects of climate change are particu-

larly pronounced in pessimistic scenarios associated with slow declines in greenhouse gas

emissions. Those predictions justify the imperative to mitigate additional climate warming

and the desire to align emissions with the two lowest-emission scenarios mentioned above.

In this regard, the Working Group III Contribution to the Sixth Assessment Report of the

IPCC states that achieving the objective of restricting global warming to a level well below

2°C requires significant transformations in the energy system within the next three decades

[Clarke et al., 2022]. These transformations encompass a reduction in fossil fuel consumption,

an augmented contribution from low- and zero-carbon energy sources, and an increased

reliance on electricity and alternative energy vectors. As a result, the French National Low-

carbon Strategy (NLCS) forecasts a 50% increase in the electricity consumption in France [RTE,

2021], as shown in Figure 3. Growing electricity demand implies that production systems
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Figure 1 • Human influence on the global surface temperature. (Reproduction of Figure 1

from [IPCC, 2021])

Figure 2 • Global mean surface air temperature (GSAT) illustrated as warming stripes from

blue (cold) to red (warm) over three different time periods. From 1750–1850 based

on PAGES 2K reconstructions (PAGES 2k Consortium, 2017, 2019). (Reproduction

of Figure 1.25 from [Chen et al., 2021])
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Figure 3 • Projected final energy consumption in the NLCS in France from 2020 to 2050.

Reproduced from [RTE, 2021]

must be highly resilient to avoid blackouts if demand exceeds production. In the meantime,

the IPCC states that the effects of climate change will influence the future prospects of local

and national low-carbon energy systems. Nonetheless, these impacts’ precise nature and

extent remain uncertain, particularly when considered at the regional scale [Clarke et al.,

2022]. This source of risk due to extreme weather is closely investigated in the context of

nuclear safety in work package 1 “Characterization of potential physical threats due to different

external hazards and scenarios” of the NARSIS project1, of which the CEA is a part.

In addition to those climate-change-related uncertain loadings, seismic risk also emerges

as a significant source of uncertain loading, which poses a substantial threat to the structural

integrity and operational stability of power generation facilities. Earthquakes, characterised

by their unpredictable occurrence and varying magnitudes, can induce complex dynamic

forces and ground motions that apply significant stress to the components and infrastructure

of these facilities. The potential consequences of seismic activity include structural damage,

equipment malfunction, and disruptions to the supply of electricity, thus emphasising the

criticality of addressing and mitigating the impact of seismic risk on power generation facili-

ties. Furthermore, the inherent unpredictability of seismic hazards motivates comprehensive

studies and assessments, even in countries with historically low seismic activity. Recent

events, such as the earthquake in western France on 16th June 2023, provide a stark reminder

that seismic events can happen unexpectedly.

For those combined reasons, there is a pressing requirement to enhance the capacity for

predicting the failure of electrical production systems in the face of uncertain risks. Indeed,

detecting power plant failures enables proactive prevention of such failures before they occur.

It also allows for the possibility of postponing maintenance operations if they are unnecessary,

thereby minimising the offline period of these crucial sources of electricity. While the climate

crisis exacerbates the need for predictions regarding the failure of electric production systems,

1NARSIS is a European project focused on enhancing the safety of nuclear power plants. The project’s list

of deliverables is available at http://www.narsis.eu/page/deliverables, with a specific deliverable addressing

extreme weather and flooding hazards.
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Introduction

such necessity was underscored in the broader context of nuclear safety by the Fukushima

accident in 2011. Within this broader framework, the work of the CEA, through projects such

as NARSIS, contributes to improving the safety of nuclear installations.

Predicting failure probabilities requires conducting numerous computationally intensive

simulations to account for multiple loading scenarios. For instance, one approach to account

for this variability is by building virtual charts known as fragility curves, which describe the

probability of structural failure [Zentner et al., 2017; Rohmer et al., 2020; Sainct et al., 2020].

When building fragility curves, boundary conditions are specified as indexed time series,

as illustrated in Figure 4a. These indexed time series represent non-parametrised loading,

such as earthquake recordings for seismic hazard assessment. A specific scalar quantity,

denoted α, describes the severity of the loading. It can, for instance, represent the peak

ground acceleration in the case of an earthquake. The signals are then grouped based on

the shared value of α. Next, using a defined failure criterion, the probability of failure P f of

the structure is computed for various values of severity α. This requires running simulations

on different signals sharing the same α. The resulting probabilities are plotted on a graph,

with the y-axis representing the probability of structural failure and the x-axis corresponding

to the severity, as depicted in Figure 4b. Interpreting this curve provides the probability of

structural failure under different levels of loading criticality, characterised by the scalar α.

Nuclear

simulation

Thermal damage

assessment

Non-linear
computations

Failure probability
prediction

Figure 5 • Industrial framework

In practice, several hundred signals

must be considered to construct a single

fragility curve, each requiring a non-linear

computation. Moreover, in industrial sce-

narios, multiple fragility curves are often

needed to account for the variability in

the health of a structure at different times

during its life cycle i.e., for different pre-

damage levels. In the context of studying

power plant piping components, the indus-

trial workflow comprises several stages, as

summarised in Figure 5, with detailed information provided in Appendix C. Initially, a nu-

clear simulation is conducted to generate physical input variables for a thermo-mechanical

simulation, which assesses the damage level resulting from thermal fatigue during nominal

pipe operation. The pre-damage assessment is then input into a non-linear solver to model

the structure’s non-linear response to numerous various hazards, such as seismic events.

Subsequently, this response is utilised to analyse the structural failure probability. This thesis

specifically focuses on a subset of this methodology, which is highlighted in Figure 5. The

substantial computational costs associated with such studies pose a significant barrier. In-

deed, in addition to including many computations, the cost of each calculation is very high

since simulation up to the ruin of the structure requires highly non-linear behaviour to be

taken into account. Therefore, there is a severe need to develop specific numerical strategies

that effectively reduce the computational burden, thereby enhancing the accessibility and
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(a) Non-parametrised indexed loading scenarios
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(b) Example of fragility curves

Figure 4 • Fragility curves and seismic ground motions examples

feasibility of comprehensive risk assessment studies. Improved numerical strategies hold the

potential to make failure probability prediction more readily available and applicable across

a wide range of engineering applications.

In order to decrease the computational cost of fatigue failure predictions, studies propose

simpler modelling based on an elastic solution post-processing [H. Wu et al., 2019; Proso

et al., 2016; Marsh et al., 2016]. However, such methods do not give a detailed description of

the non-linearities nor take the temporal specifics of the loading into account. Accurately

predicting the failure of structures requires a fine description of their non-linear behaviour

until failure. Therefore, specific efficient solvers for those detailed problems are of particular

interest.

Various methods such as Domain Decomposition Methods (DDM) [Gravouil & Combes-

cure, 2003; Farhat & Li, 2005] or adaptative mesh refinement [Zeoli et al., 2020] have been

proposed in the literature to decrease the cost of non-linear computations. Model simplifi-

cation can also achieve similar ends using super elements in dynamics, for example [Morin

et al., 2018]. Model-order reduction methods offer an alternative by not simplifying the phys-

ical problem itself but reducing the cost of solving it by looking for low-rank solutions. Such

methods are an effective mean to lower the numerical cost of expensive computations. A

posteriori methods such as Proper Orthogonal Decomposition (POD) rely on an offline stage

consisting of prior full non-linear computations for several sets of parameters [Chatterjee,

2000]. The reduced-order basis built from the snapshots is then used in the online stage to

find low-cost solutions to the non-linear problem for a new set of parameters. Automation of

snapshot selection has been proposed in the Reduced Basis method [Maday et al., 2002]. Con-

versely, a priori reduced-order methods such as Proper Generalised Decomposition (PGD)

[Néron & Ladevèze, 2010a; Chinesta et al., 2011] avoid the offline phase as the reduced-order

basis is constructed on the fly during computations. The PGD has already proven to be
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effective for dynamics problems in linear [Boucinha et al., 2014] and non-linear [Germoso

et al., 2016; Quaranta et al., 2019] contexts. On the one hand, parametric studies can include

parameters as additional coordinates of the reduced-order model [Chinesta et al., 2011; Lu

et al., 2018; Paillet et al., 2018] as done in stochastic finite element methods [Anders & Hori,

1999]. This approach does not require multiple calls to the solver, but a higher-dimensional

problem is constructed. This approach also requires specific solvers for each new parametric

problem. On the other hand, the PGD can be used to separate time-space variables only,

keeping potential other parameters outside of the solver and relying on a specific multi-query

strategy to optimally handle multiple calls to the space-time PGD solver [Nachar et al., 2020;

Néron et al., 2015]. Leaving the extra parameters outside of the PGD decomposition allows

to rely on more generic PGD solvers, enabling the development of non-intrusive solvers

[Scanff et al., 2022]. It is worth mentioning that, while the set of boundary conditions can

be seen as discrete extra-coordinates [Courard, 2016], in cases where the multi-query study

involves indexed non-parametrised time-series instead of sets of parameters, an external

multi-query framework offers more flexibility. The PGD space-time basis is built explicitly for

the problem at hand. Therefore, the PGD ensures a relevant basis for the current problem

and eliminates the need for expensive full-order computations and the tedious selection of

snapshots [Tegtmeyer et al., 2017]. The use of the PGD method requires the handling of global

solutions over space and time. In a non-linear context, the use of a non-incremental solver

is therefore required. The PGD is thus inherently embedded in the LATIN method, a non-

incremental iterative scheme [Ladevèze, 1999]. After the initialisation of the solution, each

LATIN iteration consists in solving the non-linear equations on one side and the global prob-

lem on the other side, therefore iteratively converging towards the solution of the non-linear

dynamics problem. The separation of variables between time and space is easily written for

the global problem, which remains linear even for non-linear problems. The LATIN-PGD

method has been applied to many non-linear contexts, including the damage evolution of

quasi-brittle materials subjected to low-cycle and high-cycle quasi-static fatigue loading

[Bhattacharyya et al., 2018b; Bhattacharyya et al., 2019] or under dynamic conditions [Iturra,

2021; Daby-Seesaram et al., 2023]. Two leverage points have improved the LATIN-PGD in the

multi-query context for material variability. First, the iterative scheme is initialised with the

space-time solution of a previous computation to reduce the number of iterations needed for

convergence. Second, the reduced-order basis generated for another simulation is provided

to the new simulation as in the POD framework. Thus, the computational effort to evaluate

the spatial modes to be added on the fly is reduced in a parametric context [Heyberger et al.,

2012]. Some of these advances could be used in the case of load variability, but the fact that

the different simulations do not share the same admissibility requires further development.

The numerical benefit of reduced-order modelling techniques can be paired with building

a surrogate model to reduce the number of calls to the solver, thus decreasing the numeri-

cal cost of the study. Moreover, in a context where the full solutions associated with every

computation are not useful but where only specific quantities of interest are needed, the

intermediate simulations can be performed with coarse convergence criterion. This is partic-
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ularly relevant for optimisation studies for instance. In such a context, multi-fidelity kriging

methods coupled with the PGD have been successfully employed for a parametric visco-

plastic study [Nachar et al., 2020]. Using such methods, however, requires the problem to be

parametrised with a low enough number of parameters. These methods are, therefore, not

directly applicable to the problem addressed in this doctoral thesis, given that the focus is on

tackling non-parametrised problems.

∗∗∗

This doctoral thesis introduces a promising framework that offers a cost-effective approach

to estimating the probability of structural failure under uncertain loading conditions.

As mentioned previously, the investigation was initially motivated by the case of seismic

hazard in the context of nuclear safety but extends to various studies where multiple non-

linear dynamics computations need to be performed. The objective is to develop a method

that works favourably when each non-linear computation is associated with load supplied as

a non-parametrised indexed temporal signal. The number of computations to perform is,

therefore, given and cannot be decreased to mitigate the computational cost. Moreover, in

the following, we will refrain from relying on prior knowledge of any load parametrisation as

the framework is expected to be robustly used in cases where such a parametrisation is not

readily available.

More precisely, this work offers a framework that consists of an efficient non-linear dy-

namics solver seamlessly paired with a novel multi-query strategy that exploits the similarities

from one computation to another and offers a robust procedure to determine an optimal path

through the loading scenarios space. This doctoral thesis is structured into three parts. The

first part provides an overview of the state of the art for dynamics non-linear computations,

while the second part presents the new ingredients at the core of the proposed methodology.

Finally, the third part offers an application case of this methodology for predicting the proba-

bility of failure of a structure subjected to seismic hazards. This doctoral thesis comprises a

total of five chapters, the contents of which are detailed below.

¦ PART I - STATE OF THE ART

• Chapter 1 sets out the different notations used and presents the non-linear dy-

namics problem, which lies at the core of the methodology proposed in this thesis.

An overview of some of the main time integration methods for solving dynamics

problems is given. Chapter 1 also presents an overview of non-linear solvers.

• Chapter 2 presents commonly used reduced-order model methods that can help

decreasing the high computational costs induced by the computation of the non-

linear dynamics solutions. It provides an initial overview of the Proper Generalised

Decomposition (PGD), an a posteriori method that will be further employed in the

proposed solver. The existing tools to tackle multi-query problems are also dis-

cussed, and the main idea on which the proposed framework relies is presented.
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¦ PART II - MULTI-QUERY ROM CONTRIBUTIONS

• Chapter 3 presents the solver used in the study. In order to decrease the high

numerical cost associated with solving the non-linear dynamics problem, an effi-

cient solver based on space-time model-order reduction techniques is proposed.

Given the objective of employing the solver within a multi-query framework, the

LATIN method appeared as a natural choice so that we could later rely on its non-

incremental nature to smartly initialise computations. Moreover, its architecture

allowed the combined use of temporal and frequency computations. Solving dy-

namics problems in the frequency domain gives significant advantages compared

with solutions fully computed in the temporal domain, but history-dependent

non-linear behaviour is an obstacle to employing that strategy. A hybrid approach

is proposed to solve the non-linear behaviour in the temporal domain while

the mechanical equilibrium is solved using a frequency strategy coupled with

model-order reduction methods. In order to employ the Fast Fourier Transform

(FFT) robustly for the transient regime, artificial numerical damping is used. The

reduced-order hybrid temporal-frequency approach appears as a robust and pro-

ficient technique to simulate structures under transient dynamic loadings until

failure. This chapter is derived from the work presented in [Daby-Seesaram et al.,

2023].

• Chapter 4 shows how a specific multi-query framework has been built around

the LATIN-PGD solver. Predicting the failure risk of a mechanical structure under

dynamic loadings requires running non-linear computations for a large number

of load scenarios. Reduced-order models provide relatively cheap simulation

for each load case. Assuming that previous computations have been performed,

this chapter exploits the similarities between the different simulations to further

decrease the computational cost. The new simulation benefits from previous

simulations to initialise the non-linear scheme and the reduced basis. Looking for

the parent-simulation, i.e., the best computation to accelerate the new computa-

tion, is particularly challenging in cases where the loading is non-parametrised. A

physical-based strategy using the elastic responses is proposed. A genetic algo-

rithm designs an optimal sequence to perform the simulations.

¦ PART III - APPLICATION TO THE EARTHQUAKE ENGINEERING CONTEXT

• Chapter 5 further builds on the non-incremental strategy by exploiting the multi-

fidelity aspect of the methodology. Relying on the distance indicator developed

in Chapter 4, an upgraded strategy is proposed where the stopping criterion of

the LATIN solver is chosen on the fly depending on the level of non-linearity

expressed in the close computation highlighted by the indicator. Non-critical

cases therefore lead to cheaper computations. Consequently, the total computa-

tional cost of the study is decreased without losing the fine knowledge needed to

decide whether or not a loading leads to the ruin of the structure. This extended
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methodology is showcased in an earthquake engineering context where loadings

are not parametrised but consist of indexed signals. Examples of fragility curves

are built from the multi-query study showcasing the numerical benefits offered

by the new framework in an earthquake engineering context.

The methodology is visually represented in Figure 6 as a flowchart, illustrating its se-

quential steps. Each contribution is linked to its respective chapter, providing readers with a

convenient reference to locate detailed information about each specific contribution within

the doctoral dissertation.

Set of given loading sce-

narios indexed k ∈ J1,nK

Compute the n elastic solutions

associated to the loading set

Choose the order in which to

compute the nonlinear corrections

k = 1

k 6 n

k > 2 Nonlinear correction k

Enrichment of k-th elastic solution

Update solver’s stopping criterion

Post-processing of the

nonlinear solutions

yes

yes

no

no

k = k +1

Chapter 1

Chapter 4

Chapter 4

Chapter 5

Chapter 5

Chapter 3

Figure 6 • Flow chart of the proposed methodology
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Chapter 1
A non-linear dynamics problem

When we, system dynamicists, see a

pattern persist in many parts of a system

over long periods, we assume that it has

causes embedded in the feedback loop

structure of the system.

Donella H. Meadows

This chapter introduces the non-linear dynamics problem at the core of the

proposed methodology and presents key numerical integration methods for

structural dynamics. Additionally, linear-based methods for assessing fatigue

damage in mechanical structures are discussed, highlighting their limitations. In

contrast, a comprehensive description of the plasticity-driven damageable

behaviour is provided to address these limitations. Standard non-linear

numerical solvers are then presented to solve the non-linear mechanical problem.
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1 Weak formulation of the dynamics problem

The dynamics aspects of the problem, notations and hypothesis are introduced in this

section. The kinematic description and equilibrium are first presented before giving the

weak formulation of the dynamics problem. In an ambient space E , let one consider during

the time interval I = [0,T0] a body of density ρ with spatial domain denotedΩ submitted to

body forces f d and surface forces F d onΩ and ∂Ω2 respectively, as represented in Figure 1.1.

Displacements ud are prescribed on the edge ∂Ω1.

Figure 1.1 • Reference problem

1.1 Kinematic description

This section is devoted to the kinematic description of the transformation of a continuum

medium described in Figure 1.2. In a given frame of reference R the movement from a

initial configurationΩ0 and the current configurationΩ (t ) is described through the mapping

φ
(

X , t
)

such that

φ :Ω0 −→Ω (t )

X 7−→ x =φ(
X , t

)
,

(1.1)
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1. Weak formulation of the dynamics problem

with X the vector of Lagrangian coordinates of each point M0 ∈ Ω0 and x the vector of

Eulerian coordinates of each point M (t ) ∈Ω (t ).

Figure 1.2 • Kinematic transformation of a continuum medium

The kinematic description of the transformation must account for the relative variations of

angle and length between two infinitesimal vectors dM0 and ∂M0 from the initial configu-

ration to their counter part dM and ∂M in the current configuration. To achieve this, after

having introduced the dilatation tensor

C= gFTF, (1.2)

with F = ∂φ
∂X the gradient of the transformation and g a metric of the ambient space E , a

measure of strain is introduced. An example of which, for instance, is the Green-Lagrange

tensor

E
(

X , t
)= 1

2

(
C−g

)
, (1.3)

a second-order covariant tensor defined on the initial configurationΩ0.

� Remark In the context of continuum mechanics, it is very common to work within

a Euclidean space of dimension d ∈ {
1,2,3

}
, e.g. E = Rd. In the absence of curvature,

the previously described tensors are more simply redefined asE
(

X , t
)= 1

2

(
C−1)

C=FTF.
(1.4)

The gradient of the transformation F = ∂φ
∂X can also be defined directly from the dis-

placement field u. In the frame of reference R, the displacement field u
(

X , t
)

describes the

movement of a particle point from the location M0 ∈Ω0 at t = 0 that moved to M (t ) ∈Ω (t ) at

t > 0. The displacement field u is therefore defined as
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u = M0M =φ(
X , t

)−X . (1.5)

Introducing the displacement field, the gradient of the transformationF thus reads,

F
(

X , t
)=1+ ∂u

∂X
. (1.6)

Accounting for the initial and boundary conditions described in Figure 1.1, the set of

kinematically admissible displacements denoted U is finally defined as

U =
{

u | u
(
x , t

) ∈H 1
(
Ω,Rd

)
⊗L 2 (

I ,R
)

,

u̇
∣∣

t=0 = 0, u|t=0 = 0 inΩ, u = ud and u̇ = u̇d on ∂Ω1

}
, (1.7)

where u is the displacement vector, u̇ the velocity and ε(u) the strain tensor and with d ∈
{1,2,3} depending on the spatial dimension of the problem. The corresponding homogeneous

space is denoted U 0, where ud and u̇d = 0. In the end, kinematic admissibility amounts tou ∈U

E
(

X , t
)

= 1
2

(
C−1)

.
(1.8)

In case of small strain, displacements and small rotations, the linear approximation

ε
(
u, t

)
of the Green-Lagrange tensor is much greater than the higher order terms which can

be neglected. The strain tensor ε then reads

ε
(
u, t

)= 1

2

(
∂u

∂X
+ ∂u

∂X

T
)

(1.9)

The kinematic description of the transformation between the initial and current config-

uration being finalised, a representation of the forces within the body Ω is now needed to

further complete the description of the mechanical state of the structure.

1.2 Newton’s second law of motion

Cauchy’s postulates [Cauchy, 1827] state that there are two types of forces in the studied

structures:

• volumic forces defined through a volumic force density f v

(
x , t

)
such that

– dF = f v dω

• contact forces defined through a surfacic force density T
(
x ,∂ω, t

)
such that

– dF = T
(
x ,∂ω, t

)
∂ω
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Cauchy’s second postulate stipulates that the stress vector T only depends form the external

normal vector n, therefore,

T
(
x ,∂ω, t

)= T
(
x ,n, t

)
. (1.10)

Moreover, Cauchy’s theorem allows introducing Cauchy’s tensorσ
(
x , t

)
, a second-order

contravariant and symmetric tensor defined on the deformed configurationΩ (t ) such that

T
(
x ,n, t

)=σ(
x , t

)
n

(
x , t

)
. (1.11)

Under those assumptions and in a continuum medium, Newton’s second law of motion reads

d

dt

∫
ω
ρvdω=

∫
ω

fd dω+
∫
∂ω

T∂ω, ∀ω⊂Ω

⇐⇒
∫
ω
ργdω−

∫
ω

fd dω=
∫
∂ω

T∂ω=
∫
ω
∇·σdω, ∀ω⊂Ω

(1.12)

Hence locally, the equation of motion reads,

∇·σ+ fd = ργ ∀x ∈Ω,∀t ∈ I . (1.13)

This equation, coupled with prescribed forces described in 1.1, defines the set S which

contains the Cauchy stress tensors denotedσ that are dynamically admissible and an accel-

eration γ, which is linked to the primal displacement variable u via the equation

γ= ü, (1.14)

i.e.,

S =
{(
σ,γ

) | ∇ ·σ+ f d = ργ inΩ,σ n = F d on ∂Ω2

}
(1.15)

with n the normal vector to ∂Ω2.

Newton’s law can be formally re-written under the so-called weak formulation which is a

formulation at the heart of the finite element method (FEM), widely used to solve mechanics

problems numerically. The weak formulation of Newton’s second law of motion corresponds

to the virtual power principle (VPP) of continuum mechanics.

The virtual power principle reads:

P ∗
ext +P ∗

int =P ∗
acc (1.16)

with, 

P ∗
ext =

∫
Ω

fd ·v∗dΩ+
∫
∂Ω

T ·v∗∂Ω,

P ∗
int =−

∫
Ω
σ : ε(v∗)dΩ,

P ∗
acc =

∫
Ω
ργ ·v∗dΩ;∀v∗ ∈U 0.

(1.17)
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Chapter 1. A non-linear dynamics problem

The solution to the problem s =
(
u,

(
σ,γ

)) ∈U ×S thus includes both the displacement

and stress fields that satisfy the weak formulation of the dynamic equilibrium

−
∫
Ω×I
σ : ε

(
u∗)

dΩdt +
∫
Ω×I

fd ·u∗dΩdt +
∫
∂Ω×I

Fd ·u∗dSdt

=
∫
Ω×I

ρ γ ·u∗dΩdt , ∀u∗ ∈U 0, (1.18)

as well as the constitutive relations corresponding to the material of the body. The constitutive

relation of the material is yet to be defined to complete the mechanical problem to be solved.

The behaviour equations provide a link between the aforementioned kinetic quantities and

forces.

1.3 Linear elastodynamics

In the section and in the remainder of the thesis, the small strain hypothesis is adopted.

Under such an assumption, the current and initial configuration are considered identical and

the linearised strain tensor ε can be used in preference to the Green-Lagrange tensor. The

kinematic quantity given by the strain tensor and the dual quantity described by Cauchy’s

tensors can be linked directly even though the former lives in the initial configuration while

the latter lives in the current configuration. The simplest way of linking those two quantities

it to assume a linear dependency between the two. In this case the behaviour is reversible

and consider elastic. The behaviour then simply reads

σe =K : ε, (1.19)

where σe is the elastic Cauchy’s stress tensor. If a Kelvin-Voigt description is considered,

viscous forces can be introduced in parallel to the elastic behaviour as shown in Figure 1.3.

The stress tensor then readsσ=σe +σν whereσν =D : ε̇with D being a tensor describing all

viscosity phenomena [Chevreuil et al., 2007; Eugeni et al., 2021; Chouaki et al., 1998].

Figure 1.3 • Kelvin-Voigt linear model

In the context of linear elasticity, the weak form of Newton’s second law of motion given

in Equation 1.16 reads,
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2. Time integration methods

−
∫
Ω×I
ε :K : ε

(
u∗)

dΩdt −
∫
Ω×I
ε̇ :D : ε

(
u∗)

dΩdt +
∫
Ω×I

fd ·u∗dΩdt +
∫
∂Ω×I

T ·u∗dSdt

=
∫
Ω×I

ρ γ ·u∗dΩdt , ∀u∗ ∈U 0, (1.20)

The numerical integration of a linear elastic problem has widely been discussed in the

literature and a presentation of the main methods is proposed in Section 2.

2 Time integration methods

The weak form of the dynamics problem can be semi-discretised in space using a Galerkin

approximation. Because this particular study consists in low-frequency dynamics, the finite

element method is employed to construct the basis functions
{

N x
i (x)

}
i∈J1,NK

onto which the

desired solution is projected. The displacement field u therefore reads

u
(
x , t

)≈ N∑
i=1

N x
i (x)

{
Ui

}
(t ) , (1.21)

where
{
Ui

}
is the i -th component of the nodal displacements vector

{
U

}
and N i

x (x) is the

associated spatial shape function. Once semi-discretised in space using the finite element

method, the equation reads

[
M

] ¨{
U

}+ [
D

] ˙{
U

}+ [
K

]{
U

}= {
F

}
, (1.22)

where
[
M

]
,
[
D

]
and

[
K

]
are the mass, damping and stiffness matrices respectively. The vector{

U
}

(t ) ∈UN represents the displacement vector, which is the solution to the resulting second-

order differential equation. The discrete kinematic admissible subspace UN is defined as

UN =
{{

U
} ∈RN×Nt | u ∈U

}
, (1.23)

with Nt the number of time steps.

� Remark It can be noted that the previously introduced tensor D describes viscous

phenomena locally and therefore mostly describes material viscosity while the damping

matrix
[
D

]
can also provide a broader description of dissipating phenomena. This

includes friction in joints and the dissipation arising from the structure’s interactions

with surrounding fluids. The introduction of the viscous forces in the continuum

mechanics problem is mainly interesting for mapping the role of damping throughout

the equations in the developments to follow.

In the literature, several integration methods allow to get an approximation of that dis-

placement vector in a given finite number of instants {tn}n∈J1,Nt K called time steps.
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Chapter 1. A non-linear dynamics problem

2.1 Newmark scheme

The most common integration method for structural dynamics is the Newmark scheme

[Newmark, 1959] that is implemented in most commercial finite element software. This

integration method is based on the following approximation of displacement and velocity

fields, 
˙{

U
}(

tn+1
)= ˙{

U
}(

tn
)+∆t ¨{

U
}
γ,{

U
}(

tn+1
)= {

U
}(

tn
)+∆t ˙{

U
}(

tn
)+ 1

2 ∆t 2 ¨{
U

}
β,

(1.24)

with, 
¨{

U
}
γ =

(
1−γ) ¨{

U
}(

tn
)+γ ¨{

U
}(

tn+1
)

, γ ∈ [
0,1

]
¨{

U
}
β =

(
1−2β

) ¨{
U

}(
tn

)+2β ¨{
U

}(
tn+1

)
, β ∈

[
0, 1

2

]
.

(1.25)

Relying on Equation 1.24 and Equation 1.25, the variation in acceleration
{
δÜ

}
= ¨{

U
}(

tn+1
)−

¨{
U

}(
tn

)
and the variation in velocity

{
δU̇

}
= ˙{

U
}(

tn+1
)− ˙{

U
}(

tn
)

read
{
δÜ

}
= 1

β ∆t 2

({
U

}(
tn+1

)−{
U

}(
tn

))
︸ ︷︷ ︸

{δU}

− 1
β ∆t

˙{
U

}(
tn

)( 1
2β

)
¨{

U
}(

tn+1
)

{
δU̇

}
= γ

β ∆t

{
δU

}− γ
β

¨{
U

}(
tn

)−∆t
(
1− γ

2β

)
¨{

U
}(

tn
)

.

(1.26)

Differentiating Equation 1.22 between two consecutive time steps leads to the correction

equation

[
M

]{
δÜ

}
+ [

D
]{
δU̇

}
+ [

K
]{
δU

}= {
δF

}
. (1.27)

Injecting equations given in 1.26 in the correction dynamics Equation 1.27 yields

[ [
M

]
β ∆t 2

+
[
D

]
γ

β ∆t
+ [

K
]]{

δU
}= {

δF
}+ 1

β∆t

[
M

] ˙{
U

}(
tn

)+ 1

2β

[
M

] ˙{
U

}(
tn

)
+γ
β

[
D

] ˙{
U

}(
tn

)−∆t

(
1− γ

2β

)[
D

] ˙{
U

}(
tn

)
.

(1.28)

From this equation, the displacement correction
{
δU

}
can be retrived and the velocity and

acceleration corrections
{
δU̇

}
and

{
δÜ

}
can be post-processed from Equation 1.26.

The choice of parameters γ and β drives the behaviour of the integration scheme. Table

1.1 gives an overview of the expected behaviour of Newmark scheme for different ranges of

values for its parameters.

Some pairs of hyper-parameters are widely used. For instance, the pair
(
γ= 1/2,β= 0

)
enables reducing the problem to an explicit scheme that is conditionally stable. Conversely,

the pair
(
γ= 1/2,β= 1/4

)
leads to the most accurate unconditionally stable scheme.

20



2. Time integration methods

Table 1.1 • Newmark scheme hyper-parameters

Parameters range Behaviour

γ6 1/2 Instable

1/26 γ

2β6 γ
Conditionnally stable

1/26 γ6 2β Inconditionnaly stable

2.2 Temporal finite element method

Similarly to what is classically done in space, the finite element method can be used to solve

the temporal partial differential equation. Using time finite element method, the continuous

in time displacement
{
U

}
(t ) is approximated by interpolating its values at Nt temporal nodes

as

{
U

}
(t ) =

Nt∑
i=1

N t
i (t )

{
U

}(
ti

)
, (1.29)

with N t
i (t ) being the temporal shape function associated with the i -th temporal node. Sim-

ilarly, on each temporal element comprising Nte nodes, the velocity can be approximated

as

˙{
U

}
(t ) =

Nte∑
i=1

∂N t
i (τ)

∂τ

∂τ

∂t

{
U

}(
ti

)
, (1.30)

with τ being the time coordinate on the 1D isoparametric time element. ∂x
∂t is then computed

using the same shape function leading to

∂τ

∂t
=

Nte∑
i=1

∂N t
i (τ)

∂τ
ti

−1

= [J ]−1 (1.31)

with {ti } begin the coordinate of the temporal element on the temporal mesh and [J ] being

the Jacobian matrix associated with the temporal shape functions.

The Galerkin method can be applied to either the displacement field alone or to both the

displacement and velocity fields. Moreover, the chosen elements can be either continuous or

discontinuous. The time finite element method using discontinuous Galerkin has for instance

been applied to structural dynamics [Hulbert, 1992]. A comparison of single and double field

discontinuous Galerkin method and continuous Galerkin method is presented in [Boucinha

et al., 2013] in the case of elastodynamics. Wang and Zhong, 2017 proposed a novel weak

form of the structural dynamics equation to be solved with a single field continuous Galerkin

formulation without any regularisation term. Directly solving the assembled problem using a

continuous Galerkin method can however be costly, thus reverting to an incremental solving

scheme is often proposed.
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Chapter 1. A non-linear dynamics problem

2.3 Frequency computations

Using the frequency domain allows for very efficient computations in dynamics [Hall, 1982]

thanks to the Fast Fourier Transform (FFT) algorithm described in [Cooley & Tukey, 1965].

Indeed, frequency-based calculations can easily be performed in parallel due to the indepen-

dence of the frequency steps from one another. Therefore, the computations associated with

each frequency can be done simultaneously without the need for specific temporal domain

decomposition strategies. In addition, relying on frequency calculations may be the natural

resort when dealing with parameters that depend on the loading frequency, such as hysteric

damping [Bishop, 1955]. With
{

Ŭ
}

the Fourier counterpart of the displacement vector
{
U

}
,

ω the angular frequency and j the imaginary unit, the semi-discretised dynamics equation

reads

[
−ω2 [

M
]+ jω

[
D

]+ [
K

]]{
Ŭ

}
=

{
F̆

}
. (1.32)

� Remark The FFT algorithm introduced in [Cooley & Tukey, 1965] required that the

number time steps was a power of two. Since then this requirement has been lifted by

various extension of the algorithm but the FFT remains more efficient if the temporal

discretisation leads to a number of time steps that is a power of two.

In case of non-smooth function, the Fourier representation leads to unwanted artefact

called Gibbs phenomenon [Carslaw, 1925]. In practice, sharp variations of the function or

discontinuity therefore appear as an obstacle to employ the FFT algorithm. In particular

if a function f is described over a temporal interval I and f (min(I )) 6= f (max(I )), then the

non-periodicity of the function would incur Gibbs phenomenon. In particular, if a structure

is weakly damped or prevented in some way from returning to its initial state such that its

final state differs from its initial state, Gibbs phenomena will be observed. Chapter 3 presents

a method based on artificial damping [Humar & Xia, 1993] to reduce unwanted aliasing

effects arising in such cases.

3 Failure prediction with elastic models

Based the elastodynamic solution, a first estimation of the potential failure of the structure

can be performed. Indeed, simple models allow to rely on the elastic response alone to

predict the failure of a structure. There are many variants that can be used to predict the level

of damage to a structure based on the elastic response alone. This section aims at giving a

brief overview of the ideas that are commonly found.

The endurance limit of a given structure, defined as the number of cycles N f it can

withstand under cyclic loading with a specific mean stress σm and stress amplitude σa , can

be determined by S-N curves derived from experimental fatigue tests. A typical example of

S-N curve is presented in Figure 1.4. For non-cyclic loading scenarios, the loading can be

22



4. Ductile damage model with crack-closure effect

represented as an equivalent number of cycles using the rainflow cycle counting method

[Socie, 1992]. Then, under the assumption that fatigue damage is equal to the accumulated

cycle ratio, the endurance of the structure can be determined using the Palmgren-Miner

linear damage rule [Hashin & Rotem, 1978; Miner, 1945]. This assumption is translated as

D =∑
i

ni

N f i
, (1.33)

with D the cumulative fatigue damage of the structure, ni is the number of cycle associated

with the load σi and N f i is the endurance of the structure associated with the load σi . Faillure

happens when D = 1. Those method based on the sole elastic solution have already been

applied to structural dynamics [H. Wu et al., 2019; Proso et al., 2016; Marsh et al., 2016].

Figure 1.4 • Example of an S-N curve

S-N curves provide a general approach

but may not accurately capture the specific

behaviour of a structure in all scenarios. In-

deed, using such curves lack of sensitivity to

localized effects and they do not account for

loading history and its influence on fatigue

damage accumulation. Accurately predict-

ing the failure of structures under complex

loading requires a fine description of their

non-linear behaviour until failure. The be-

haviour can alternatively be described us-

ing the evolution of history-dependent non-

linear internal variables [Lemaitre, 1996].

4 Ductile damage model with crack-closure effect

In order to get a detailed description of the failure phenomenon, the elastic hypothesis is

dropped in favour of a damageable plastic behaviour in this thesis. The resulting non-linear

behaviour is described in this section.

Similarly to a Kelvin-Voigt model, the non-linear elasto-plastic damage model studied

herein is taken in parallel with the material damping properties (see Figure 1.5). The total

stressσ can therefore be decomposed into a damageable elasto-plastic partσδ and a viscous

partσν so that it readsσ=σδ+σν. Non-linearities arise from the contribution of the elasto-

plastic damage branch, including crack-closure effects. The ductile non-linear behaviour is

yet to be described.

4.1 Effective stress

Damage growth is governed by plasticity, which is modelled using linear kinematic and

isotropic hardening as introduced in [Lemaitre & Chaboche, 1994]. Isotropic damage is

characterised by the scalar variable D. Crack-closure effects [Lemaitre & Desmorat, 2005;
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Chapter 1. A non-linear dynamics problem

Figure 1.5 • Kelvin-Voigt non-linear model

Lemaitre, 1996] are described by introducing the effective damageable elasto-plastic stress

tensorσδe f f [Bhattacharyya et al., 2019] as

σδe f f = σδd
1−D

+
 〈σδH 〉

1−D
−〈−σδH 〉

1, (1.34)

where σδH = 1
3 Tr(σδ) andσδd =σδ−σδH 1 are the hydrostatic stress and the deviatoric part of

the Cauchy stress tensor, respectively. The operator 〈�〉 = max
(
�,0

)
gives the positive part of

the quantity of interest. 1 denotes the identity tensor and Tr(�) gives the trace of�. Thus,

the Hooke relation is conveyed by a linear relationship between the effective damageable

elasto-plastic stress and the elastic strain εe as

σδe f f =K : εe (1.35)

with K representing the Hooke’s tensor.

4.2 State and evolution laws

The limit of the elastic domain is defined by the yield function fp as

fp = J2

(
σδ

1−D
−X

)
−σy −R, (1.36)

where J2
(
�

)
is the von Mises equivalent stress operator and σy is the material yield stress.

When hardening occurs, the isotropic hardening variable and the kinematic hardening tensor

are denoted R and X . The yield function fp satisfies

fp 6 0, (1.37)

with an elastic domain defined by fp < 0. Otherwise, when fp = 0, plasticity occurs and the

internal variables are updated.

The plasticity model considered here is a Marquis-Chaboche model [Lemaitre & Chaboche,

1994]. The strain tensor is composed of an elastic part εe and a plastic part εp such that

ε= εe +εp . (1.38)
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5. Non-linear solvers

The cumulative plastic strain p is a strictly increasing internal variable introduced to describe

the plasticity level. Linear hardening is given by the linear state equationsR = hp,

X = 2
3Cα,

(1.39)

where h and C are two material coefficients andα is the kinematic internal variable.

Normality rule leads to the following plasticity evolution laws

ε̇p = ṗ
3

2

(
σδe f f −X

)
d

J2

(
σδe f f −X

) ,

α̇= ṗ
(
1−D

)3

2

(
σδe f f −X

)
d

J2

(
σδe f f −X

)
 .

(1.40)

Damage evolution law [Lemaitre & Desmorat, 2005] is given by

Ḋ =

 ṗ
(

Y
S

)sd
, if ws > wD

0, otherwise
(1.41)

where sd and S are material parameters and Y is the elastic energy density defined as

Y = 1

2
εe :K : εe = Rν

J2

(
σδe f f

)2

2E
, (1.42)

with Rν = 2
3

(
1+ν)+ 3

(
1−2ν

)〈 σδe f f ,H

J2

(
σδe f f

)〉2 the triaxiality function, ν the Poisson ratio, E the

Young’s modulus and σδe f f ,H the hydrostatic part of the effective damageable elasto-plastic

stress tensor. ws denotes the corrected stored energy density [Lemaitre & Desmorat, 2005]

defined as

ws =
∫

I

(
Rṗ +X : α̇

)
dt . (1.43)

This energy density is compared with an energy density threshold wD , which is a material

parameter. The non-linear behaviour is modelled using this plasticity-driven damage model

until the damage variable reaches the critical value Dc at least at one integration point;

macrocracks are initiated once this value is reached and classical continuum mechanics is

no longer adapted to describe damage phenomena. In the following, the generic expression

of the behaviour will be referred to asσδ =H
(
ε (u)

)
.

5 Non-linear solvers

A wide range of solvers is available to solve non-linear mechanical problems. The main

idea of those solvers is to rely on two-alternated search directions. The idea is to alternate
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Chapter 1. A non-linear dynamics problem

between solving non-linear equations and the VPP. Search directions allow going back and

forth between the local quantities and the solutions of the admissibility problem.

� Remark

Vocabulary: Specific terminology is used for two-alternated search directions solvers.

A search direction

• is said to be vertical when the local and global strain are kept the same, i.e. when

the numerical computation is stress-controlled,

• is said to be horizontal when the local and global stress are kept the same, i.e.

when the numerical computation is strain-controlled.

Among non-linear solvers, the Newton–Raphson method and its derivatives are the most

commonly used.

5.1 Newton-Raphson method

The Newton-Raphson method, based on Newton’s work [Newton, 1736], is an iterative ap-

proach used to solve non-linear equations. It works by incrementally approximating the

solution through successive iterations, relying on the first-order approximation of the equa-

tion around previous step. The temporal domain is discretised into a finite number of time

steps. By performing the iterative process for each time step, the method converges towards

the solution at these specific instants. Once the solution for one time step is converged in

the sense of a given criterion, the incremental algorithm moves to the next time step and the

iterative convergence process is repeated.

In practical terms, from a converged solution ui at time step i , the solution ui+1 for the

next time step i +1 is is calculated so as to cancel a residual R
(
ui+1

)
. Such residual is defined

as

R (u) =−
∫
Ω×I
σ : ε

(
u∗)

dΩdt +
∫
Ω×I

fd ·u∗dΩdt +
∫
∂Ω×I

Fd ·u∗dSdt

−
∫
Ω×I

ρ γ ·u∗dΩdt , ∀u∗ ∈U 0.
(1.44)
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In practice, several corrections∆uk
i+1, so that un

i+1 = ui +
n∑

k=1
∆uk

i+1, are computed until the

residual is smaller than a chosen stopping criterion ηN R∥∥∥∥∥∥∥R

ui +
n∑

k=1
∆uk

i+1


∥∥∥∥∥∥∥6 ηN R , (1.45)

and the displacement is initialised using the previous converged value such that u1
i+1 = ui .

The corrections are computed in an iterative process. Each step aims at finding a displace-

ment correction∆uk+1
i+1 so that

R

ui +
k+1∑
l=1
∆ul

i+1

= 0, (1.46)

which, at the first-order, translates to the equation

R′
(
uk

i+1

)
∆uk+1

i+1 =−R
(
uk

i

)
, (1.47)

where R′ is the derivative of the residual with respect to the displacement. Once semi-discreti-

sed in space, the operator R′ is the Jacobian matrix of the residual matrix and corresponds to

the tangent stiffness matrix. The method is graphically illustrated in Figure 1.6. Numerous

Figure 1.6 • Newton-Raphson scheme applied to mechanics

variants of this algorithm have been developed to reduce its computational cost. Such an

approach, called the modified Newton scheme, involves treating the stiffness operator as a

constant over a specified number of steps. Although this may negatively impact convergence,

it enables skipping the computation of the expensive stiffness operator thus decreasing the

numerical cost.
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One limitation of these schemes is their inability to handle situations where the overall

stiffness of a system reaches zero. In such cases, when a global softening occurs, the method

fails to achieve convergence. To solve problems in which such phenomena appear, so called

arc-length methods can be used.

5.2 Arc-length solvers

The arc-length method is an alternative approach used to solve problems involving situations

where the overall stiffness of a system reaches zero, causing a global softening. Its iterative

principle is similar to that of Newton’s method, as it also relies on an incremental approach

and most of the concepts presented in Section 5.1 applies. The main idea is that the increment

is no longer a displacement nor a force but a mixed of primal and dual quantities.

In practice, the arc-length method involves considering both displacement increments

and a load scaling parameter λ, commonly referred to as the arc-length parameter. This

parameter allows for tracking the behaviour of the system as it undergoes softening. By

introducing the arc-length parameter, the method effectively bypasses the issue of zero

stiffness. Because a new parameter is added, an extra-equation is needed to solve the problem

thus introducing the so called arc-length equation [Riks, 1979] that takes the form of an arc-

following constraint

g
(
ui ,λi ,∆u,∆λ,∆l

)= 0, (1.48)

where ∆l is the path length increment and g represents a chosen hypersurface that intersects

with the displacement-force cuve. Several arc-length equations have been proposed in the

literature, thus introducing different variations of the arc-length method. The most common

schemes are Riks [Riks, 1979] Crisfield [Crisfield, 1981; 1983] and Ramm [Ramm, 1981]. A

more recent approach suggests using the energy to drive the computations [Gutiérrez, 2004].

The spherical Riks method is illustrated in Figure 1.7 derived from [Crisfield, 1983]. This

figure shows the method in the case where the hypersurface g is chosen to be an hypersphere.

Note that arc-length increment does not have a physical signification on the contrary of

displacement or force increment when discretising the load in the Newton’s algorithm.

5.3 Non-incremental solvers

In addition to the previously mentioned incremental methods, there also exist non-incremental

non-linear solvers. In such cases, the iterative convergence process occurs over complete

space-time solutions. At each iteration, a solution over the entire space-time is computed.

The difference between incremental and non-incremental solvers is illustrated in Figure 1.8.

These so-called non-incremental schemes are so called because they lead to the manipula-

tion of spatio-temporal fields at each iteration, unlike incremental schemes which build the

solution time step by time step. However, this does not prevent time-based partial differential

equations from being solved after a temporal discretisation of the problem.

The LATIN method is a non-incremental solver which makes it particularly well suited

to a priori model-order reduction methods that will be latter presented. The core idea of
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,

,

Figure 1.7 • Spherical Riks method, reproduced from [Crisfield, 1983].

(a) Incremental method (b) Non-incremental method

Figure 1.8 • Comparison between incremental and non-incremental schemes

29



Chapter 1. A non-linear dynamics problem

the method is to separate the local equations (which may be non-linear) from the global,

linear equations. The solutions of those two sets of equations define the two manifolds Γ

and Ad respectively which are linked by two user-defined search directions H+ and H−. The

LATIN method therefore falls in the scope of the two-alternated search directions schemes.

The exact solution sexact of the problem is both a solution of the local and global equations

and therefore lies at the intersection of those two manifolds, sexact = Γ∩Ad . In practice, the

method consists in an iterative process to estimate the solution by alternately considering

the local and global aspects as shown in Equation 1.49. A graphical illustration of the method

is given in Figure 1.9.

s0 ∈Ad → ŝ1/2 ∈ Γ→ s1 ∈Ad 99K

Local stage︷ ︸︸ ︷
ŝn+1/2 ∈ Γ→

Global stage︷ ︸︸ ︷
sn+1 ∈Ad︸ ︷︷ ︸

Iteration n+1

99K . . . (1.49)

� Remark In a sense, arc-length methods are closer to the LATIN method than

Newton-Raphson is as the LATIN methods allows a great variablity of search directions

therefore does not require the local aspect of the computation to be strain or stress

controlled but allows for a mix of both as do arc-length methods. Such a parallel is, for

instance, drawn in [Vandoren et al., 2013a].

The LATIN method has been used in a wide range of applications. It has first been

developed to tackle non-linear problems, which is the intended application in this work,

but its concepts have been extended to several computational methods since then. The

LATIN has for instance been used as a domain decomposition methods as a mixed strategy

[Ladevèze & Dureisseix, 1999; Champaney et al., 1997; Oumaziz et al., 2017; Ruda et

al., 2022]. Using the method in a domain decomposition framework allowed coupling the

XFEM methods and multi-scale approaches [Guidault et al., 2007]. As mentioned, besides

domain decomposition approaches, the LATIN is used as a powerful non-linear solver that

has proven effective for a wide range of highly non-linear problems. It has for instance

been used for hyper elasticity problems [Boisse et al., 1990] or large strain with plasticity

Figure 1.9 • Graphical illustration of the LATIN method reproduced from [Ladevèze, 1999]
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5. Non-linear solvers

[Boucard et al., 1997] as well as for quasi-brittle materials [Vandoren et al., 2013a]. In the

context of this thesis, the main advantages of the LATIN scheme are the separation of local

and possibly non-linear equations from global but linear equations and its non-incremental

aspect. First, separating local and global equations, allows to use different tools for the non-

linear local equations and for the linear global equations, which in the context of the thesis are

a return mapping algorithm for solving the “local” equations and frequency computations

for the global linear equation. Second, the non-incremental aspect of the LATIN solvers

combined with the previously mentioned separation of the linear equations allows using

reduced-order methods to solve the global equations of a non-linear problem. This has

proven advantageous in numerous non-linear cases such as viscoplastic cases [Relun et al.,

2015], fatigue computations [Bhattacharyya et al., 2018b], and strongly coupled problems

[Néron & Dureisseix, 2008]. Third, the non-incremental aspect of the LATIN allow a wise

initialisation of the iterative process, thus decreasing the numerical cost of simulations

[Boucard & Champaney, 2003; Néron et al., 2015]. This last aspect also allows access to

multi-fidelity solutions. Indeed, stopping the iterative process still gives a whole space-time

solution for a coarser convergence criterion [Nachar et al., 2020] thus giving access to low

fidelity solution in cases where the required precision for the solution is low.

� Remark The LATIN method leads to an algorithm that gives access at each iteration

to a spatio-temporal approximation of the solution. In this respect, it is often described

as a “non-incremental” method. This non-incremental nature of the LATIN method

can be perceived as a drawback in certain cases. While it is highly convenient to have

access to a semi-converged spatio-temporal solution at each iteration of the method

in certain cases, such as for optimisation purposes, it can also be detrimental not to

incrementally solve the numerical problem. In a scenario where the structure would

reach failure within the studied time interval, an incremental method would allow for

a converged solution until the structure’s failure and then stop the computation. In a

similar scenario, the LATIN method would fail to provide a solution.
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Chapter 1. A non-linear dynamics problem

y Chapter summary

The mechanical problem of interest consists in solving two types of equations. On the

one hand it consists in dynamics equations that are linear but global in the sense that

they couple all the spatial degrees of freedom of the studied structure. Those equations

can be solved with several time integration schemes. In the reminder of the thesis, a

frequency solver is used. On the other hand, the solution to the whole problem must

also satisfy the non-linear behaviour. Besides the global dynamics equation, the set

of local, possibly non-linear equations characterising the behaviour of the material

must, therefore, also be solved. However, these equations are local and can, therefore,

be solved independently on each Gauss point of the structure. The non-linear model

describes the plasticity and damage evolution of the structure, taking into account the

crack-closure effect. The numerical treatment of the non-linear aspect of the problem

has also been described. Several non-linear solvers allow the computation of solutions

to those non-linear mechanical problems. A strength of the non-incremental LATIN

method is its ability to encompass an a priori reduced-order model method natively.

Such methods require global equations over the space-time domain, which is exactly

the general framework offered by the LATIN method.

∗∗∗

A Perspectives

The previously described numerical model allows a physically detailed description

of the material evolution during loading. However, it results in a strongly non-linear

problem with a large number of degrees of freedom as it relies on a fine description of

the structural behaviour. It has been shown in [Bhattacharyya et al., 2018a] that in a

quasi-static context the LATIN-PGD method allows to finely describe the response of a

damageable structure with few PGD modes. The great reducibility of such problems in

quasi-statics has motivated the investigation of their usage in a low-frequency dynamics

context. The use of such methods requires the linearisation of the non-linearities; the

LATIN-PGD method has proven to be an efficient way to decouple the non-linear

behaviour from the linear admissibility equations [Ladevèze, 1999; Néron & Ladevèze,

2010a], allowing the usage of reduced-order methods on the latter. Such decoupling

also gives a high degree of modularity to the method that is exploited in chapter 3.
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Chapter 2
Model order reduction and multi-query

approaches for non-linear mechanics

Science is what we have learned about

how to keep from fooling ourselves.

Richard Feynman

The use of reduced-order model techniques is one possible way of reducing the

prohibitive cost of non-linear studies. This chapter provides an overview of key

reduced-order modelling techniques and the efficiency of the Proper Generalised

Decomposition is exemplified on a data compression example. Additionally,

typical treatments of multi-query problems are presented, highlighting the LATIN

solver’s potential in this context.
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Chapter 2. MOR and multi-query approaches for non-linear mechanics

The main drawback of a detailed non-linear description is that it raises the need for a fine

spatial and temporal discretisation, leading to a large number of degrees of freedom, whereas

the computation cost of these calculations needs to be relatively low to make non-linear

studies feasible. Thus, solving a non-linear dynamics problem requires the use of an efficient

solver that can handle both the dynamics and the non-linear aspects for a modest calculation

cost. Moreover, in the context of risk assessment, multiple non-linear computations are

required. The solver must, therefore, be efficient and multi-query friendly. The combined use

of reduced-order modelling and non-linear solver can help decrease the cost of the non-linear

simulations while providing a solution that takes into account complex material behaviour.

1 Model-order reduction methods

In order to decrease the computational costs associated with the search for discretised me-

chanical fields, model-order reduction methods rely on the separated-variable representation

of the quantities of interest. In particular, the displacement field u
(
x , t

)
, can be expressed as

u
(
x , t

)= ∞∑
i=1

Λi (x)⊗λi (t ) , (2.1)

where ⊗ denotes the tensor product. In cases where the Kolmogorov width of the field to be

reduced is small, the above equation can be approximated with a small number m of pairs.

In this scenario, the rank-m approximation um of the displacement field reads

u
(
x , t

)≈ um
(
x , t

)= m∑
i=1

Λi (x)⊗λi (t ) . (2.2)

In the structural dynamics context, after discretising the problem using a Galerkin ap-

proximation, which already transforms the solution from being sought in an infinite space to

being sought in a spatial space of finite dimension N , the objective is to further reduce the

dimension of the space in which the solution is sought.

� Remark The Galerkin approximation used when using the finite element method

already leads to a separated-variable representation of the displacement field. A tem-

poral function is associated to each shape functions which, in fact, are very local spatial

modes. Reducing the dimensionality of the discretised problem can be seen as re-

placing the very local modes associated with each node, i.e. the finite element shape

functions, with more global modes constituting the reduced-order basis.

After discretisation of the problem, the essence of reduced-order modelling is to seek the

solution within a smaller subset Rm×Nt ⊂RN×Nt , where m ¿ N . The goal is not to simplify

the model itself, but rather to reduce the dimensionality m of the subspace in which the

solution is sought.
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1. Model-order reduction methods

Let {Λk }k∈J1,NK and {Λk }k∈J1,mK be two bases of RN and Rm respectively. In the context of

a time-space displacement field for instance, the idea is to approximate a solution
{
U

}
such

that {
U

}= N∑
i=1

{
Λi

}{
λi

}T ≈
m∑

i=1

{
Λi

}{
λi

}T , (2.3)

thus relying on the space-time separability of the displacement field ensured by a thin

Kolmogorov width dm defined as

dm = inf
Rm×Nt ⊂RN×Nt

 sup
{U}∈UN

(
inf

{Um}∈Rm×Nt

∥∥∥{
U

}−{
Um

} ∥∥∥) , (2.4)

where UN , defined in Equation 1.23, is a restriction of RN×Nt to the discrete displacement

fields that satisfy the dynamics equation.

� Remark A visual representation of the compression benefits offered by the separa-

tion of variables is showcased on a discrete two-dimensional field. The information

content reduces from N ×Nt to m × (
N +Nt

)
, a significantly smaller amount as long as

m remains small.

Under a discretised form, the m-th order reduced approximation
{
Um

}
of the displace-

ment
{
U

}
reads

{
U

}= [
Π

]{
Um

}
, (2.5)

with
[
Π

]
a projection matrix on subspace of dimension m.

[
Π

]
is a N ×m matrix whose

columns are span the subspace in which the reduced solution is searched for. Once this

operator is chosen, i.e. once the reduced-basis is chosen, the equation of motion can be

projected onto the subspace as

[
Mm

]{
Üm

}
+ [

Dm
]{

U̇m

}
+ [

Km
]{

Um
}= {

Fm
}

, (2.6)

where 

[
Mm

]= [
Π

]T [
M

][
Π

]
,[

Dm
]= [

Π
]T [

D
][
Π

]
,[

Km
]= [

Π
]T [

K
][
Π

]
,{

Fm
}= [

Π
]T [

F
]

,

(2.7)
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Chapter 2. MOR and multi-query approaches for non-linear mechanics

thus decreasing the numerical cost associated to the computation of its solution.

A major difficulty consists of finding a suitable reduced-order basis for the problem of

interest, i.e. finding the best subspace Rm×Nt so that corresponding to the Kolmogorov width

defined in 2.4. Various methods of reduced-order modelling exist, each leading to different

approaches for obtaining a reduced-order basis. This section aims to present the primary

methods employed in computational mechanics to obtain such a reduced-order basis.

1.1 Craig-Bampton method

In the case of the Craig-Bampton (CB) method [Craig & Bampton, 1968], the idea is to reduce

part of the internal degrees of freedom of the structure on interfaces. In practice, the Craig-

Bamptom method classifies degrees of freedom into two categories: boundaries degrees of

freedom B and internal degrees of freedom I of the subsystems. The stiffness matrix can

therefore be decomposed as four sub-matrices as

[
K

]= [[
K I I

] [
K I B

][
KB I

] [
KBB

]] , (2.8)

where the submatrices
[
K I I

]
and

[
KBB

]
represent the stiffness of the internal subsystems and

of the boundary respectively. The matrices
[
K I B

]
and

[
KB I

]
couple interface and internal

degrees of freedom. The projection matrix
[
Π

]
then reads

[
Π

]=
 [

1
] [

0
]

−[
K I I

]−1 [
K I B

] [
Λ

]
 , (2.9)

with
[
Λ

]
the truncated vibration modes matrix where only a limited number of vibration

modes
{
Λ

}
i are retained. The number of vibration modes required can, for instance, be

chosen based on a posteriori error estimation [Jakobsson et al., 2011].

In practical terms, the reduced basis is therefore made up of all the static modes on the

boundaries that ensure the admissibility of the displacement field, and a truncation of the

clamped structure’s vibration modes. Those vibration modes are obtained by solving the the

eigenproblem of the substructure[[
K I I

]−ω2 [
MI I

]]{
Λ

}= {
0
}

. (2.10)

Several variations of the CB method exist. In particular the dual Craig-Bampton approach

[Rixen, 2004] assembles the substructures using interface forces instead of displacement

continuity.

1.2 Modes superposition

The eignevectors of the structure can also be used in a more direct manner without substructu-

ring the structure. The modal projection method [Hansteen & Bell, 1979; Avitabile, 2003], is

a model reduction technique where the modal basis of the structure directly serves as the
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1. Model-order reduction methods

reduced basis. The eigenfrequencies ωi and the eigenmodes
{
Λi

}
of the structure are the

solution of

[[
K

]−ω2 [
M

]]{
Λ

}= {0}. (2.11)

In practice, only few eigenvectors are kept to describe the solution of the dynamics

problem. The aforementioned reduction matrix
[
Π

]
is therefore composed of the m first

eigenvectors of the previous problem.

� Remark In scenarios involving non-linear behaviour leading to small localised

variations in the displacement field, the inclusion of very short wavelength modes

becomes essential to address these localised effects. Capturing those modes requires

computing high-frequency-associated modes, despite the loading resulting in a low-

frequency response.

In order to avoid solving an eigenvalue problem to find the eigenmodes of the structure,

the latter can instead be approximated by Ritz-vectors [Idelsohn & Cardona, 1985; AL-

Shudeifat & Butcher, 2010]. The eigenvalue problem can also be solved on the reduced

domain given by the Craig-Bampton method to decrease the associated computational cost.

� Remark The described methods so far are solely based on the knowledge of the

structure but do not account for the specificities of the loading applied to it. Taking into

account knowledge from the loading to which the structure is subjected can help better

choose the reduced-basis that best describe the solution and may help decreasing the

number of modes needed.

The reduced-order basis on which the solution is sought after can also be composed of

modes other than the Linear Normal Modes (LNM).

The Proper Orthogonal Decomposition (POD) has also been used in a dynamics context

[Eftekhar Azam & Mariani, 2013] where some authors showed better approximation results

than LNM superposition [Radermacher & Reese, 2013].

1.3 Proper Orthogonal Decomposition (POD)

The Proper Orthogonal Decomposition (POD), also known as Principal Component Analysis

(PCA), is a model-order reduction technique used in an a posteriori manner. It involves

computing POD modes from previously obtained solution fields called snapshots. The POD

modes form the reduced basis. The snapshots are typically generated in an off-line stage

through a small number n of simulations that produce solutions close to the desired reduced

solutions. Once the POD basis is constructed from these snapshots, following computations

can be performed online with a significantly reduced numerical cost, using the POD reduced

basis.
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Chapter 2. MOR and multi-query approaches for non-linear mechanics

This section focuses on the method employed to compute the POD basis from a collection

of snapshots. The objective is to find a reduced basis {Λk }k∈J1,mK of dimension m that best

represents the snapshots {ui }i∈J1,nKR
d×n with d ∈ {

1,2,3
}

depending on the dimension of the

problem. This objective is translated into solving the minimisation problem

{{
Λk

}}
k∈J1,mK

= argmin{{
Λk

}}
k∈J1,mK

∈RN×m({
Λk

}
,
{
Λ j

})
= δ j

k


n∑

i=1
‖ui −

m∑
j=1

(
ui ,

{
Λ j

}){
Λ j

}
‖2

︸ ︷︷ ︸
J

({{
Λk

}}
k∈J1,mK

)


. (2.12)

� Remark As that the cost function also reads

J

({{
Λk

}}
k∈J1,mK

)
=

n∑
i=1

‖ui‖2 −
n∑

i=1

m∑
k=1

(
ui ,

{
Λk

})2
, (2.13)

the minimisation problem reverts to maximisation problem. On a discretised problem,

and for the scalar product associated to the L2 norm, the latter reads

{{
Λk

}}
k∈J1,mK

= argmax{{
Λk

}}
k∈J1,mK

∈RN×m({
Λk

}
,
{
Λ j

})
= δ j

k

 n∑
i=1

m∑
k=1

({
U i

}T {
Λk

})T ({
U i

}T {
Λk

}) ,

(2.14)

Introducing the snapshot matrix
[

X
]= Col

({
U i

})
and its auto-correlation matrix

[
S
]=[

X
]T [

X
]
, the problem becomes

{{
Λk

}}
k∈J1,mK

= argmax{{
Λk

}}
k∈J1,mK

∈RN×m({
Λk

}
,
{
Λ j

})
= δ j

k

 m∑
k=1

{
Λk

}T [
S
]{
Λk

} . (2.15)

Solving that leads to finding the stationarity of the Rayleigh quotient associated with

the auto-correlation matrix
[
S
]
. A discrete version of the POD thus closely relates to

the Singular Values Decomposition (SVD) [C. Wu et al., 2003]. With the introduced

notations, seeking for the eigenvalues of the correlation matrix
[
S
]

is the same as

seeking for the singular values of the data matrix
[

X
]
.
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The described POD method enables significant data size reduction and leads to a reduced-

order basis on which a costly numerical problem can be projected to decrease its dimension-

ality. However, the quality of this basis is closely linked to the chosen snapshots. For example,

in a spatio-temporal problem, if all snapshots come from a stationary part of the evolution,

the basis may poorly represent the transitional regime. Additionally, the a posteriori aspect of

the method implies that it relies on prior possibly costly computations. The obtention of the

reduced-basis might therefore be very costly while not being well suited to the study of the

current problem.

1.4 Reduced-basis method

Like the POD method, the Reduced-Basis (RB) method [Maday & Rønquist, 2002] is a tech-

nique that aims at building a reduced-order basis onto which the problem is then projected to

reduce its dimensionality. The RB method, however, offers a robust strategy for the selection

of snapshot thus overcoming a major drawback of the POD method. In case of an equation

parametrised by a vector µ ∈D, selecting suitable snapshots amounts to choosing a finite

number of samples
{
µi

}
i∈J1,nK ∈Dn .

Figure 2.1 • Parametric manifold M and

approximation of the solu-

tion associated to the param-

eter µ∗. Reproduced from

[Rozza, 2014]

The RB method progressively enriches the

reduced basis by incrementally selecting snap-

shots, i.e. new samples µi , that maximise the

quality of the solution. The greedy algorithm

building the reduced-order basis consists in

identifying the snapshot with the largest pro-

jection error Ξ onto the current reduced basis

and adding the corresponding missing infor-

mation by enlarging the reduced basis to bet-

ter represent the solution. Once an m−rank re-

duced basis has been built relying on k snap-

shots
{

u(i )
}

i∈J1,kK
, the k+1-th snapshot u(k+1) =

u
(
x , t ,µk+1

)
is selected by finding the parame-

ters maximising the projection error, i.e.

µk+1 = arg max
µk+1∈D

∥∥∥u(k+1) −u(k+1)
m

∥∥∥︸ ︷︷ ︸
Ξ

, (2.16)

with u(k+1)
m the k + 1-th snapshot’s projection onto the current reduced basis. Since the

solution u(k+1) for the new snapshot is unknown prior to computation, this projection error

remains dependent on the selection of an error estimator. Suitable error estimators must be

used to avoid the high cost of browsing the whole parametric space [Prud’homme et al., 2001;

Rozza et al., 2008].

Once the quality of the reduced-order basis is considered sufficient, the online phase

during which the smaller-dimension projected problem is solver is similar to what is achieved
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Chapter 2. MOR and multi-query approaches for non-linear mechanics

using the POD. The solution of the problem for any new µ∗ ∈ D is then computed as a

combination of the previous snapshots. A graphical representation of the manifold

M ,
{

u
(
x , t ,µ

) |x ∈Ω, t ∈ I , µ ∈D
}

(2.17)

and of the approximation of u
(
x , t ,µ∗)

is given in Figure 2.1.

The RB method still relies on previous full computation in order to build the reduced-

order basis and is designed for problems involving explicit dependence on the parameters.

1.5 Proper Generalised Decomposition (PGD)

To avoid the drawbacks of prior (possibly costly) computations of an offline phase, dedicated

modes can be calculated on the fly thanks to a priori methods, therefore optimising the

number of modes computed to get a solution. The Proper Generalised Decomposition

(PGD), initially referred to as the approximation radiale by [Ladevèze, 1985], is distinct from

the Proper Orthogonal Decomposition (POD) in that it is an a priori method. Unlike the

POD, which derives the reduced-order basis from existing snapshots, the PGD involves

directly computing the different modes that comprise the reduced-order basis using a greedy

algorithm for instance. This greedy algorithm iteratively adds modes that best capture the

desired solution until the appropriate level of approximation is achieved. Such a priori

methods have already shown interesting results when applied to dynamics problems. For

example a space-time PGD [Néron & Ladevèze, 2010a; Chinesta et al., 2011] was successfully

applied to transient problems [Ammar et al., 2007] and space-time dynamics [Boucinha

et al., 2013; Boucinha et al., 2014]. Reduced-order modelling methods generally require

linear equations but the PGD, along side non-linear solvers, has already been applied to

dynamics in a frequency context for non-linear elastic applications [Quaranta et al., 2019]

and non-linear contact forces [Germoso et al., 2016]. A linearisation process can also rely on

a static-dynamic hybrid scheme for updating non-linear geometrical forces under a static

assumption while applying those forces in a dynamics framework [Yang et al., 2019].

In addition to remove the burden associated with obtaining snapshots, the PGD offers

the advantage of providing a low-order approximation with a specified error level, without

requiring prior knowledge of the number of modes needed to achieve that error. This specific

feature sets the PGD apart from a posteriori methods, where the number of modes necessary

to attain a certain level of accuracy must be estimated in advance. In contrast, the PGD’s

greedy algorithm dynamically determines the number of modes required to meet the desired

error tolerance during the approximation process.

In addition to being used directly to solve equations, PGD can, like POD, be used to

compress data. While the application of PGD for solving partial differential equations will be

explored in detail in Chapter 3, this section will concentrate on illustrating the fundamental

principles of the PGD method specifically for data compression applied to a bi-parametric

function f
(
x , y

)
defined as
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1. Model-order reduction methods

f : Ωx ×Ωy −→R(
x , y

) 7−→ f
(
x , y

)
.

(2.18)

The aim is to find the families {Λi }i∈[|1,m|] and {λi }i∈[|1,m|] so that the m-order approxima-

tion f m of f reads

f m =
m∑

i=1
Λi (x)λi (y). (2.19)

The approximation f m is computed so that

f m(x , y) = arg min
Λi ,λi

 ∫
Ωx×Ωy

(
f (x , y)−

m∑
i=1
Λi (x)λi (y)

)2

dxdy

 . (2.20)

When adding the k-th mode, the minimisation presented in 2.20 leads to findingΛk and

λk such that ∫
Ωx×Ωy

(
δ f −λkΛk

)(
λ∗Λk +λkΛ

∗)
dxdy = 0, ∀(

λ∗,Λ∗) ∈I ×V , (2.21)

whereδ f = f − f k−1 and with I =L 2
(
Ωy

)
and V =L 2

(
Ωx

)
. Equation 2.21 stands∀(

λ∗,Λ∗) ∈
I×V . Getting the PGD pair

(
Λk ,λk

)
thus results in solving the following two-equation system


∫
Ωx

(
δ f −λkΛk

)
Λk dx = 0,∫

Ωy

(
δ f −λkΛk

)
λk dy = 0.

⇔


λk =

(∫
Ωx

δ f Λk dx

)(∫
Ωx

Λ2
k dx

)−1

,

Λk =
(∫
Ωy

δ f λk dy

)(∫
Ωy

λ2
k dy

)−1

.

(2.22)

In practice, norming Λk or λk insures the uniqueness of the solution. The previous

system is solved using a fixed-point algorithm alternating between solving one equation of

the system and the other.

� Remark The reason why a non-incremental scheme is required to use the PGD

comes from the need to integrate over the whole domain at each iterations. With an

incremental solver, the solution is only known on the whole domain at the end of the

iterative process, rendering the computation of those integrals impossible.

The function f can for instance be a surface or an image made of pixels. To get a quantifi-

able idea of how much data can be compressed using such a decomposition, the previously

described algorithm has been implemented on an image (see Figure 2.2) and the results are

shown in the following graphs and figures.
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Figure 2.2 • Uncompressed image - Furfande, GR 58

(a) 10 PGD Modes used (b) 50 PGD Modes used (c) 100 PGD Modes used

(d) Error with 10 PGD Modes (e) Error with 50 PGD Modes (f ) Error with 100 PGD Modes

Figure 2.3 • Compressed images and their respective errors
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Figure 2.4 • Error function of the number of PGD modes for each colour canal

In that example, the picture described using 100 modes in Figure 2.3f is still 93% lighter

to store than the original picture. The data reduction applied to a function f that is expensive

to store has thus been illustrated. Such computations do also lead to having a reduced basis

just as the POD did which could also be used for future other computations. The PGD shows

similar numerical cost-reduction results in the context of partial differential equation solving

that will be presented in Chapter 3.

2 Multi-query context

In a multi-query context where a solver is called numerous times, having an efficient solver

relying on reduced-order model helps decreasing the high computational cost but other

levers exist to further decrease the numerical burden associated with such study. The number

of calls required for the study can for instance be decreased. In some cases the number of

calls to the solver is fixed. In those cases, an efficient multi-query framework can still lead to

significant decrease of then numerical cost of the study.

2.1 Surrogate models

In a parametric context, surrogate models give an approximation of a given quantity of

interest (QoI) based on a finite sample of possibly costly solutions constituting the training

set. Knowing the input parameter of the problem the surrogate model provides a mapping

to the quantity of interest. Once the surrogate model has been built, it allows predicting the

value of the quantity of interest for a new set of parameters that is not part of the training

set without the need to call the solver. Evaluation of the response of the structure regarding

a given QoI therefore becomes very cheap as it only requires reading the value out of the

surrogate model.

Based on a training set of observations
{(
θi ,Di

) ∈Θ×R
}

i∈J1,nK
, where θi are input pa-

rameters and Di the maximum damage of the structure for those parameters, and using a
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Gaussian process regression (GPR) for instance [Hensman et al., 2010; Deringer et al., 2021],

the maximum damage D of a structure as a function of new parameter set θ ∈ Θ can be

interpolated as

D
(
θ
)= n∑

i=1
ωi k

(
θ,θi

)∀ θ ∈Θ, (2.23)

where k is a kernel function and
{
ωi

}
i∈J1,nK are the weights associated with each previous

observation in the training data set. Those coefficients are found by minimising a loss

function penalising the distance of estimation of known points with their real value. Such

minimisation leads to

{ω} =
([

C
]+ [

Σ
])−1 {

D
}

, (2.24)

where {ω} and
{
D

}
are the vectors whose coefficients are the weights and the values of damage

for the known data points. The matrix
[
Σ

]
is a diagonal matrix that allows to tune the strength

of the fitting of the estimation to the known data points. The covariance matrix
[
C

]
reads[

C
]

i , j = k(θi ,θ j ). (2.25)

Based on this interpolation method, new data points can be gradually added to the train-

ing dataset until the standard deviation over the expected input parameter range becomes

acceptable. The rules governing the addition of new points can be tailored for specific appli-

cations, such as classification. For example, employing the kriging algorithm for classifying

between failure and non-failure can achieve high precision when sampling rules are carefully

designed accordingly [Fuhg & Fau, 2022]. The surrogate model enables the creation of a

virtual chart where the quantity of interest can be estimated inexpensively once the training

set is sufficiently rich, although its initial creation requires costly numerical computations as

each entry in the training dataset represents a call to the non-linear solver. To further reduce

the cost of the parametric study, some points can be computed using a coarse solver stopping

criterion, resulting in low fidelity points. By combining the multi-fidelity aspect provided by

the non-incremental nature of LATIN and kriging, significant numerical advantages can be

achieved [Nachar et al., 2020]. Those surrogate models however require the entries of the

problem to be easily parametrised and would not work to account for uncertainty of indexed

time series.

2.2 Enhanced multi-query solvers

One of the main advantages of the LATIN method in a multi-query context is its non-increm-

ental nature. This key element incurs that the numerical scheme is initialised using a space-

time solution. This solution is usually taken to be the elastic solution associated with a non-

linear problem but in the case of multiple calls to the solver, the initial solution can be chosen

as a previous non-linear solution that is guessed to be close to the current computation.

Doing so allows to start the iterative process closer to the exact solution of the problem, thus
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decreasing the number of iterations needed to reach convergence. A wise initialisation of

the LATIN scheme has already proven very effective without reduced-order method in the

case of contact non-linearities where several dozen calculations were performed for various

sets of parameters [Boucard & Champaney, 2003]. As the methodology is very versatile, it

has latter been reused for different applications and extended to work favourably paired with

the PGD [Néron et al., 2015; Heyberger et al., 2012]. The method has proven effective at

decreasing the number of iterations required for thermal and visco-plastic problems where

both the previous solution and previous PGD bases were reused. Shared PGD modes are thus

only computed once and used through out different computations as shown in [Néron et al.,

2015].

It is worth mentioning however that in the existing literature, the variability from one

computation to the other lies in the change of behaviour. The different solutions of the multi-

query problem therefore share admissibility. Using one whole solution to wisely initialise the

LATIN scheme is therefore possible because all solution are points on the same manifold Ad .

The idea of wise initialisation is therefore graphically presented in Figure 2.5 where a first

computation ( j ) is performed and its solution is used to initialise a second computation (k)

thereby decreasing the number of iterations needed to reach the converged solution.

(j) 

(k)

(k) (j) 

Figure 2.5 • Wise initialisation strategy

Although PGD bases are shared, during the numerous calls to the solver, the number of

PGD modes generated can however become quite large. In order to decrease the number

of modes needed to represent the solution works have shown that introducing an SVD

decomposition instead of a Gram-Schmidt algorithm helps getting an optimal basis of lower-

rank [Giacoma et al., 2015; Alameddin et al., 2019].
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y Chapter summary

Directly solving non-linear problems often incurs a high computational cost. To de-

crease that numerical cost, model-order reduction techniques can be used. Most of

those methods rely on prior costly computations to build a reduced basis on which

the problem is then projected. The modal projection method provides insight into

the structure’s specifics through an eigenvalue computation but overlooks loading

and other features. The POD utilises snapshots, i.e. full-order model calculations to

account for features like loading and non-linear responses. The PGD, on the other

hand, offers a method to build a reduced basis on-the-fly during the computation of

the solution, eliminating the need for prior computations. The reduced-order basis

thus directly incorporates all specific features of the current calculation. The use of

such a method, however, requires the solver to be non-incremental. To that aim, the

LATIN method offers a compelling choice, allowing the use of the PGD in a non-linear

context. The solver also proved very effective in a multi-query context as it allows for a

wise initialisation of the non-linear computations based on previous results. Lastly, the

LATIN solver also gives access to multi-fidelity solutions which can be used to build

precise virtual charts at a lower cost.

∗∗∗

A Perspectives

The LATIN scheme can be extended to allow frequency computations in a non-linear

context paired with model-order reduction techniques. The reduced-order model

hybrid temporal-frequency solver is described in chapter 3. Building on the wise

initialisation idea in a multi-query context, a specific framework needs to be built in

cases where the variability lies in the loading scenarios. Indeed, with such variabilities,

the different solutions no longer share admissibility therefore, they cannot be used

directly to initialise the LATIN iterative scheme. Such a framework is presented in

chapter 4. Lastly, when building virtual charts for failure assessment, the multi-fidelity

aspect offered by the LATIN can be utilised to further decrease the numerical cost of

the risk study. This aspect is presented in chapter 5.
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Contributions to a MOR framework
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Chapter 3
A hybrid frequency-temporal reduced-order

method for non-linear dynamics

It is simple, and therefore it is beautiful.

Richard P. Feynman

A hybrid approach is proposed to solve the non-linear dynamics problem. It offers

frequency-computation and ROM advantages while allowing for solving the

history-dependent non-linear behaviour. Artificial damping is introduced to

handle non-periodic solutions arising from non-linear effects or transient regimes.
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Chapter 3. Non-linear reduced-order model solver

This chapter focuses on the method used to efficiently solve the non-linear dynamics

problem of interest. The proposed solver is a LATIN-based hybrid approach consisting

of computations done partially in the frequency and temporal domains. The frequency

domain may not be suited for the description of non-linearities inherent to the behaviour.

Evolution laws often rely on the knowledge of temporal quantities [Lemaitre & Desmorat,

2005] since describing material non-linearities is incremental by nature: the mechanical state

of a medium depends on the previous state of the latter and on the current load applied. A

specific effort must be made to take advantage of frequency domain computations when

dealing with non-linear materials and one of the objectives of the present chapter is to

describe the linearisation strategy that will be used in this work.

An alternating frequency-temporal approach [Cameron & Griffin, 1989] has already been

carried out to find periodic steady-state solutions on structures with few degrees of freedom

[Zhu et al., 2022; Kappauf et al., 2022] or where only few degrees of freedom were impacted

by non-linear forces, such as dry-friction or contact forces [Nacivet et al., 2003; Von Groll &

Ewins, 2001; Leine & Schreyer, 2016]. In order to take into account damage-induced non-

linearities in dynamics, the proposed method relies similarly on an alternative scheme, but it

is embedded within an efficient linearisation framework, called the LATIN method [Ladevèze,

1999], already used for many history-dependent non-linear problems involving internal vari-

ables. It thus allows complex material non-linearities to be taken into account robustly within

a naturally non-incremental framework. Contrary to other alternating-temporal approaches,

the foundation of the proposed strategy is to offer a reduced-order model embedded in the

solver. As mentioned, separating variables reduces computational costs in solving non-linear

dynamics. Furthermore, it’s worth noting that the LATIN method’s previously mentioned

suitability in a parametric framework [Boucard & Champaney, 2003] was a key factor in its

selection. This method has been applied for dynamics problems with visco-plastic behaviour

[Rodriguez et al., 2019] as well as for a wide range of behaviour non-linearities for statics

problems, including, among others, the study of plasticity, damage evolution for quasi-brittle

materials, and fatigue prediction [Vandoren et al., 2013b; Vitse et al., 2019; Bhattacharyya

et al., 2018b; Bhattacharyya et al., 2019; Iturra, 2021] where computations were totally dealt

with in the temporal domain. The LATIN approach is traditionally equipped with an efficient

a priori model-order reduction method, using a space-time separation of variables, the afore-

mentioned PGD; the resulting method is the LATIN-PGD. The proposed methodology does

not use a classical space-time decomposition but relies on a space-frequency separation of

variables that is well suited for dynamics problems. The PGD already proved to be effective in

a linear space-frequency context for acoustic problems [Barbarulo et al., 2014; de Brabander,

2021] as well as for structural dynamics [Chevreuil & Nouy, 2012; Malik et al., 2018].

The efficiency of frequency computations relies heavily on the Fast Fourier Transform

(FFT) performances. To avoid Gibbs phenomena [Humar & Xia, 1993] in the case of poorly

damped or in the eventuality of the structure not returning to its rest position due to non-

linear effect, artificial damping [Humar & Xia, 1993] is used in both the transfer function and

the right-hand side of the problem.
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1 The LATIN-PGD method for dynamics problems

The essence of the LATIN-PGD method is to separate the equations driving the behaviour

from those corresponding to the admissibility of the solution.

1.1 An iterative scheme with two alternated search directions

The LATIN method [Ladevèze, 1999] consists of an iterative scheme with two alternated

search directions which estimates the solution on the whole time-space domain at each

iteration. A graphical illustration is proposed in Figure 3.1 and gives a schematisation of the

numerical strategy. Solutions of the non-linear equations (Equations (1.35), (1.37), (1.39),

(1.40), (1.41)) on one side and of the linear equations (Equation (3.8) imposing the respect of

Equation (1.18)) on the other side define the two manifolds Γ and Ad , respectively. The exact

solution sexact lies at the intersection of these two manifolds. The consecutive approximations

of this solution are computed alternately in Γ and Ad through the iterative scheme

s0 ∈Ad → ŝ1/2 ∈ Γ→ s1 ∈Ad 99K

Local stage︷ ︸︸ ︷
ŝn+1/2 ∈ Γ→

Global stage︷ ︸︸ ︷
sn+1 ∈Ad︸ ︷︷ ︸

Iteration n+1

99K . . . (3.1)

This iterative scheme shaping the LATIN method is first initialised by a dynamically

admissible elastic solution s0. Then, each iteration comprises two stages, a local stage and

a global stage. The non-linear part of the constitutive behaviour is solved on the whole

time-space domain during the local stage, while the global stage consists of solving a linear

problem based on admissibility conditions, also imposed on the whole time-space domain.

Knowing the estimation of the quantities sn at iteration n the solution ŝn+1/2 of the local

problem is estimated in Γ from the search direction H+. From ŝn+1/2 the solution sn+1 of the

global problem is sought after in Ad based on the search direction H−, as follows
(
σδn+1 − σ̂δn+1/2

)
−H− :

(
εn+1 − ε̂n+1/2

)= 0,(
σ̂δn+1/2 −σδn

)
+H+ :

(
ε̂n+1/2 −εn

)= 0.
(3.2)

Those search directions provide a link between the damageable elasto-plastic stress σδ,

computed when solving the non-linear behaviour during the local stage and the dynamically

admissible stressσ corrected during the global stage. The iterative scheme continues until

the quantity

η=
(

‖ŝn+1/2 − sn+1‖2

1/2‖sn+1‖2 +1/2‖ŝn+1/2‖2

)1/2

(3.3)

is lower than a user-defined threshold ηc . The norm ‖s‖ is defined as

‖s‖2 =
∫
Ω×I
ε :K : ε dΩdt +

∫
Ω×I
σδ :K−1 :σδ dΩdt . (3.4)
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Figure 3.1 • Working principle of the LATIN method, modified from [Ladevèze, 1999]

The interested reader can refer to [Ladevèze, 1999] for the choice of the search directions

and a detailed description of the methodology. The following subsections give an overview of

the stages of the iterative scheme.

1.2 The non-linear ‘local’ stage

The local stage estimates all internal and state variables such that the constitutive behaviour

detailed in Section 4 of Chapter 1 is satisfied. Considering the two previously-defined man-

ifolds, the local stage gives ŝn+1/2 ∈ Γ knowing sn ∈ Ad using the search direction given in

Equation (3.2) and the behaviour description. Herein, the search directionH+ is chosen such

that ε̂n+1/2 = εn i.e. H+ =∞.

Knowing ε̂n+1/2, finding ŝn+1/2 ∈ Γ leads to solving the system
ε̂n+1/2 = ε̂e

n+1/2 + ε̂p
n+1/2

σ̂δe f f n+1/2
=K : ε̂e

n+1/2

σ̂δn+1/2 =H
(
ε̂n+1/2

)
.

(3.5)

A traditional return mapping algorithm [Lee & Fenves, 2001] is set up so that the damage

variable D , as well as the plastic multiplier p driving the evolution of the isotropic hardening

R, the kinematic hardening X and the plastic strain εp satisfy the Equations (1.37), (1.40),

(1.41). Because those equations are local, they are solved independently on each Gauss point

of the considered structure.

� Remark Note that the above framework is general and versatile, and that any other

behaviour could be solved at the local stage.
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1.3 The linear ‘global’ stage

From the elastic initialisation s0 ∈Ad giving displacement prediction u0(x , t ) ∈U , displace-

ment corrections ∆u j ∈ U 0 are computed at each following global stage to ensure that

dynamic admissibility given by Equation (1.18), is achieved. The displacement field is ap-

proximated as

u
(
x , t

)≈ u0(x , t )+
n∑

j=1
∆u j︸ ︷︷ ︸
∆u

. (3.6)

Introducing the operator ∆�n+1 defined as the correction between two successive estima-

tions, i.e. ∆�n+1 =�n+1 −�n , the admissibility equation in terms of correction reads

−
∫
Ω×I

∆σn+1 : ε(u∗)dΩdt =
∫
Ω×I

ρ∆γn+1 ·u∗dΩdt , ∀u∗ ∈U 0. (3.7)

Using Equation (1.14) and the search direction as defined by Equation (3.2), we obtain∫
Ω×I

H− : ε(∆un+1) : ε(u∗)dΩdt +
∫
Ω×I

D : ε(∆u̇n+1) : ε(u∗)dΩdt

+
∫
Ω×I

ρ∆ün+1 ·u∗dΩdt

=
∫
Ω×I

[(
σδn − σ̂δn+1/2

)
−H− :

(
εn − ε̂n+1/2

)]
︸ ︷︷ ︸

f̂ n+1

: ε(u∗)dΩdt , ∀u∗ ∈U 0.

(3.8)

One may notice that terms in the right-hand side f̂
n+1

of that equation are known quan-

tities at this stage. The displacement field ∆un+1 is the only unknown at this stage, which

consists basically of solving a linear dynamics problem.

1.4 Reduced-order model implementation

The PGD model-order reduction method can naturally be introduced in the global stage of

the LATIN method, which deals with linear equations over the space-time domain. Doing so

means that the displacement correction∆u ≈∑n+1
j=1 ∆u j computed at the n+1-th global stage

is sought after as a sum of modes defined as products of space functions ui and temporal

functions λi (t ). After having added m PGD pairs, the displacement reads

∆u(x , t ) ≈
m∑

i=1
λi (t )ui (x). (3.9)

Once m > 1 PGD modes have been added, a preliminary substep of the global stage

can be inserted between both the local stage and the addition of a new PGD pair. The

substep consists of updating the previously computed temporal modes {λi }i∈J1,mK in order

to achieve dynamic admissibility while the spatial modes {ui }i∈J1,mK are considered fixed. If

this updating step proves to be sufficient, the next LATIN iteration can be performed; if it is

insufficient, a new PGD pair is added.
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� Remark Due to the updating stage, the number of PGD pairs might be lower

than that of LATIN iterations. In Equation 3.6, n LATIN iterations lead to n corrections

∆ui to be computed and Equation 3.9 shows that the full inelastic correction∆u(x , t )

consists of a sum of m modes with m6 n. Indeed, some LATIN stages only consists in

updating the time functions without adding new PGD pairs.

The reader can refer to [Nouy, 2010] for an overview of the methods to solve a linear

problem using the PGD. Section 2 details the calculations arising from the PGD paradigm for

the application of the methodology in the frequency domain.

2 Hybrid frequency-temporal reduced-order approach

The main Equation (3.8) of the problem corresponds to a linear dynamics equation that,

when semi-discretised in space, reads

[M ]{Ü }+ [D]{U̇ }+ [K ]{U } = {F }. (3.10)

In addition to which, initial and boundary conditions need to be specified. It consists of a

finite element problem where [M ], [D] and [K ] are the mass, damping and stiffness matrices

respectively. Thus, its computation can easily be performed in the frequency domain, as

traditionally done in the literature [Hall, 1982], in order to benefit from all corresponding

computational advantages. Indeed, frequency-based calculations, for instance, allow for

easy parallelisation of the computations. Contrary to time steps, frequency steps are not

interdependent, and the computation for each frequency step may easily be done simul-

taneously on different threads of a multi-threaded chip without the need to use specific

temporal domain decomposition techniques [Lions et al., 2001; Chartier & Philippe, 1993].

Moreover, it appears that much fewer frequency steps than time steps are needed to describe

the signals dealt with. For those two combined reasons, a frequency-based method leads

to cheaper computations. In addition, the use of a frequency-based methodology may, in

some cases, be required to deal with some frequency dependency of the material behaviour,

such as hysteric damping [Bishop, 1955] where the damping matrix [D] would depend on

the frequency. However, the description of the non-linear behaviour of the material can only

be achieved in the temporal domain. Thus, the decoupling feature of the LATIN method,

introduced in Section 1, is employed to jointly use the temporal and frequency domains.

Note that the FFT algorithm is very efficient. Thus, numerous transfers between temporal

and frequency domains do not represent a bottleneck. The time associated with alternating

between the temporal domain and the frequency domain using the FFT and iFFT algorithms

is insignificant compared to the numerical cost of a given computation, i.e. a few tenths or

hundredths of percent of the total computational time. Technicalities of LATIN iterations and

the specific Fourier and inverse Fourier transforms involved in the method are schematised

in Figure 3.2. First, the elastic problem is solved on the frequency domain. Then, after an

inverse Fourier transform, the non-linear behaviour (manifold Γ) is approximated on the
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temporal domain and the dynamic admissibility equation (manifold Ad ) is solved based on

a frequency strategy. This step is enhanced with the implementation of the PGD. Again an

inverse Fourier transform is performed before the successive iteration and the algorithm goes

on until reaching convergence.

Figure 3.2 • Scheme of the hybrid frequency-temporal strategy

2.1 Temporal calculations of the non-linear behaviour

The constitutive behaviour presented in Section 4 of Chapter 1 gives a history-dependent

description of the material properties evolution. Ensuring the validity of the von Mises yield

criterion given in Equation (1.37) at a given instant, for instance, requires the knowledge of the

isotropic and kinematic hardening R and X at that particular instant, which depend on the

loading history up to the moment in question. Similarly, knowledge of the damage variable

D , which also depends on the loading history, is needed to compute the effective damageable

elasto-plastic stressσδe f f described in Equation (1.34). Solving the behaviour equations must

therefore be done in the time domain. The LATIN local stage consists precisely in solving

the problem given by Equation (3.5), which groups the constitutive equations as already

explained. For our reference problem, Equations (1.37), (1.40), (1.41) are solved using a

backward Euler integration scheme and a return mapping algorithm. It can be noted that the

size of the problem depends on the number of degrees of freedom. However, these equations

can be straightforwardly parallelised as they are independent for each Gauss point.
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2.2 Frequency calculations of the admissibility equation

The dynamics part of the problem lies in the global equations leading to the solutions on

the manifold Ad . Those linear dynamics equations are well-suited to a frequency approach

which allows for very efficient calculations. Therefore, the global stage of the LATIN scheme

will take advantage of that framework.

Elastic initialisation

The iterative scheme begins with initialising the estimation considering an elastic behaviour.

The goal is to solve the weak form of the dynamics problem, which was previously defined

in the temporal domain by Equation (1.18). It is now turned into the following frequency

problem:

−
∫
Ω
ε(ŭ) :K : ε(ŭ∗)dΩ− ω

∫
Ω
ε(ŭ) :D : ε(ŭ∗)dΩ+

∫
Ω

fd · ŭ∗dΩ

+
∫
∂Ω

Fd · ŭ∗dS =−ω2
∫
Ω
ρ ŭ · ŭ∗dΩ, ∀u∗ ∈U 0,∀ω ∈R+, (3.11)

where the angular frequency is denoted ω and ŭ(x ,ω) is the Fourier transform of the dis-

placement u(x , t ), as follows

ŭ(x ,ω) =
∫ +∞

−∞
u(x , t )e− ωt dt . (3.12)

When solving such a problem numerically, only a finite number Nt of time steps and

therefore of angular frequency steps is considered. Let Φ = {ωi }i=J1,Nt K be the finite set of

angular frequencies. Then for each ωi in Φ, one needs to solve Equation (3.11), leading

to Nt independent problems that can be solved separately. Hence, computations can be

sped up using parallelisation. Moreover, if the external load happens to be zero for some of

these angular frequencies, the computations for these particular frequencies can be skipped,

leading to supplementary calculation gains.

Calculation of the displacement correction

Once the elastic initialisation has been performed, the global stage of the iterative scheme

consists of adjusting a displacement correction ∆u that is dynamically admissible to zero

as given by Equation (3.8) such that the displacement field solution of the problem reads

u
(
x , t

)= u0
(
x , t

)+∆u
(
x , t

)
with the correction being improved at each iteration such that

it reads ∆u ≈ ∑n+1
j=1 ∆u j at the

(
n +1

)
-th global stage. Similarly to the elastic initialisation,

those steps are written in the frequency domain. Equation (3.8) is turned into∫
Ω
H− : ε(∆ŭn+1) : ε(ŭ∗)dΩ+ ω

∫
Ω
ε(∆ŭn+1) :D : ε(ŭ∗)dΩ

−ω2
∫
Ω
ρ∆ŭn+1 · ŭ∗dΩ=

∫
Ω

˘̂f n+1 : ε(ŭ∗)dΩ ∀ŭ∗ ∈U 0,∀ω ∈R+,
(3.13)
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which is solved as multiple decoupled spatial problems. Moreover, this step is well-suited

for using model-order reduction techniques such as the PGD, which further helps lowering

calculation cost by reducing drastically the number of degrees of freedom.

A greedy algorithm is set up in order to find the increment of the displacement field∆ŭ
under a PGD form

∆ŭ(x ,ω) ≈
m∑

i=1
ui (x)λ̆i (ω), (3.14)

where m represents the number of PGD modes used to describe the solution.

Addition of a new PGD pair

When adding a new PGD pair at the LATIN iteration n + 1, the displacement correction

corresponds to the estimation of the m +1 pair comprising a space and a frequency function.

One gets

∆ŭn+1 = um+1λ̆m+1.

Thus, considering the addition of a PGD pair, Equation (3.13) leads to the two coupled

equations that define the new spatial and frequency modes {um+1, λ̆m+1}

∫
Ω
ε(um+1)Hλ

m+1 ε(u∗)+
∫
Ω
ε(um+1)Dλ

m+1 ε(u∗)+
∫
Ω

um+1Mλ
m+1u∗dΩ

=
∫
Ω

∫
I
λm+1 f̂ n+1dt : ε(u∗)dΩ, ∀u∗ ∈U 0

(
am+1 + ωbm+1 −ω2cm+1

)
λ̆m+1 = ğm+1,∀ω ∈R+

(3.15)

solved using a fixed-point algorithm initialised by a user-chosen temporal function, with,

Hλ
m+1 =

∫
I

(
λm+1

)2
H−dt

Dλ
m+1 =

∫
I
λ̇m+1Dλm+1dt

Mλ
m+1 =

∫
I
ρλ̈m+1λm+1dt

am+1 =
∫
Ω
ε

(
um+1

)
:H− : ε

(
um+1

)
dΩ

bm+1 =
∫
Ω
ε

(
um+1

)
:D : ε

(
um+1

)
dΩ

cm+1 =
∫
Ω
ρum+1 ·um+1dΩ

ğm+1 =
∫
Ω
ε

(
um+1

)
: ˘̂f n+1dΩ.

(3.16)

Estimating the new frequency modes involves spatial integrals, whereas the estimation

of the new space mode is based on temporal integrals. Indeed, for the sake of simplicity,
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Chapter 3. Non-linear reduced-order model solver

usual temporal integral operators are employed here as the considered damping does not

depend on the frequency. Thus the new frequency mode is transformed back to its temporal

counterpart at each iteration, which is straightforward using the inverse FFT algorithm. The

operators Hλ, Dλ and Mλ of the spatial problem in Equation (3.15) are therefore similarly

obtained by injecting the PGD form of the displacement correction from Equation (3.9) to

Equation (3.8) as it has been detailed for the frequency modes in Equations (3.13) and (3.14).

One may notice that the contribution of the previous PGD modes is taken into account in the

right-hand-side of those equations where the quantity f̂ n+1 links the quantities computed in

the LATIN global stage n and the following local stage n +1/2 as follows

f̂n+1 =
(
σδn − σ̂δn+1/2

)
−H− :

(
εn − ε̂n+1/2

)
. (3.17)

� Remark 1 An orthogonalisation step is carried out once a new mode has been

added. This step allows the previously computed modes to form a basis without losing

the newly computed information. Moreover, projecting a new mode onto the basis

provides additional insights: the extent to which it adds new information. For instance,

if its projection is zero, it indicates that the previous modes already represent this

mode, rendering it irrelevant. In practical terms, when generating a new pair of modes(
um+1,λm+1

)
, we “eliminate" from um+1 the projection of the new mode onto the

preceding modes, yielding ům+1. Consequently, we adjust the λi values accordingly

to avoid information loss, resulting in λ̊i . Subsequently, we normalise this new mode

ům+1 using equations (3.18), (3.19), (3.20), and (3.21).

um+1 =
m∑

i=1
(λi +λm+1 uT

i u)︸ ︷︷ ︸
λ̊i

ui +λm+1

(
um+1 −

m∑
i=1

(uT
i u)ui

)
︸ ︷︷ ︸

ům+1

(3.18)

um+1 ←− ům+1

‖ům+1‖K
(3.19)

λm+1 ←−λm+1‖ům+1‖K (3.20)

{λi }i∈J1,mK ← {λ̊i }i∈J1,mK (3.21)

� Remark 2 Alternatively, time vectors can also be compressed as proposed in

[Giacoma et al., 2015], converging towards the SVD decomposition of the displacement

field, thus avoiding reduncdancy in temporal vectors.

Updating the frequency modes

Before adding a new PGD pair to the decomposition already including m pairs, a simple

update of the frequency functions λ̆i (ω) is performed considering the associated spatial
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2. Hybrid frequency-temporal reduced-order approach

modes ui as fixed. Such a step is achieved by solving the problem(
AUpdate + ωB Update −ω2C Update

)
Λ̆= F̆ Update,∀ω ∈R+, (3.22)

with, for any
(
k, l

) ∈ J1,mK2,

AUpdate
kl =

∫
Ω
ε

(
uk

)
:H− : ε

(
ul

)
dΩ

B Update
kl =

∫
Ω
ε

(
uk

)
:D : ε

(
ul

)
dΩ

C Update
kl =

∫
Ω
ρuk ·ul dΩ

F̆ Update =
∫
Ω
ε

(
uk

)
: ˘̂f n+1dΩ

(3.23)

and,

Λ̆=
[
λ̆1, λ̆2, · · · , λ̆m

]T
. (3.24)

Starting by updating the frequency functions may allow skipping the addition of a new

PGD pair if the updating step allows sufficient progress in the iterative scheme. Then, the

LATIN iteration is significantly less expensive than adding a new pair. A new mode is only

added if the updated functions {λi , Update}i∈J1,mK are considered too similar compared to their

counterpart {λi }i∈J1,mK prior to the updating step, i.e.

max
i∈J1,mK

 ∫
I |λi −λi , Update|dt

1/2
∫

I |λi +λi , Update|dt

6 ξc (3.25)

with ξc a user-defined threshold.

The proposed method relies heavily on multiple Fourier transforms. However, the FFT

algorithm is known for not being robust for signals which do not vanish at the end of the

time window. Indeed, when the damping rate is low or if the temporal observation window is

short, one may face the transient regime where FFT can lead to temporal overlapping [Humar,

1990]. To avoid this numerical artefact, artificial damping is included to the global equations.

Artificial damping in the frequency calculation strategy

Artificial damping can be added temporarily as a computational step to overcome the over-

lapping issue. This method, which offers numerical robustness for any scenario, is inspired

by the Prony transform [Van Blaricum & Mittra, 1978] which corresponds to a damped Fourier

transform.

Consider the case where a PGD pair is added, i.e. when solving Equation (3.15). The

frequency problem can be written as

λ̆m+1(ω) = H̆m+1(ω)ğm+1(ω) (3.26)
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Chapter 3. Non-linear reduced-order model solver

by introducing Hm+1 as the response function of the system and gm+1 as the forcing function

as follows 
gm+1(t ) =

∫
Ω

f̂ n+1(t , x)ε
(
um+1

)
dΩ,

H̆m+1(ω) =
(
am+1 + ωbm+1 −ω2cm+1

)−1
.

(3.27)

Artificial damping is introduced through a modified response function

H̃m+1(t ) = e−ad t Hm+1(t ) (3.28)

with ad ∈R+∗ , a user-chosen parameter that will further be discussed. The damped response

function can also be evaluated without an explicit temporal formulation but directly from its

frequency counterpart [Humar & Xia, 1993] as

˘̃Hm+1(ω) = H̆m+1(ω− ad ) (3.29)

with  the imaginary unit. Equation 3.29 is directly derived from equation 3.28. Indeed,

˘̃Hm+1(ω) =
∫ +∞

−∞
H̃(t )e− ωt dt

=
∫ +∞

−∞
e−ad t H(t )e− ωt dt

=
∫ +∞

−∞
H(t )e− (ω− ad

)
t dt

= H̆m+1(ω− ad ).

(3.30)

Then, the temporal solution λm+1(t ) of Equation (3.15) satisfying

λm+1(t ) =
∫
R

Hm+1(t −τ)gm+1(τ)dτ (3.31)

also satisfies the following modified relationship

λm+1(t ) = ead t
∫
R

H̃m+1(t −τ)g̃m+1(τ)dτ, (3.32)

with g̃m+1(τ) = e−adτgm+1(τ) the modified forcing function. Because H̃m+1 is inherently

damped, the convolution product g̃m+1? H̃m+1 can be easily performed numerically in the

frequency domain. Thus, the problem of interest consists in evaluating the modified Fourier

response ˘̃λm+1(ω) through the following problem

˘̃λm+1(ω) = ˘̃Hm+1(ω) ˘̃gm+1(ω), (3.33)

which is robust and accurate even in cases where the response function Hm+1 is poorly or

even not damped.

Then the initial unknown λm+1(t ) is retrieved as

λm+1(t ) = ead t λ̃m+1(t ). (3.34)
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3. Numerical results

Figure 3.3 • Frequency modes calculation strategy based on artificial damping

The artificial damping strategy can be summarised by Figure 3.3.

Similar strategy is used for the elastic initialisation and for each LATIN iteration, either

updating frequency modes or adding a new pair. It allows for the accurate calculation of a

transient solution on an observation time I = [0,T0] at the end of which the structure shall

still be vibrating.

� Remark Artificial damping also helps to avoid Gibbs phenomena in a non-

linear context where residual displacements due to plasticity, for instance, prevents the

structure from returning completely to its initial state even after an extended period.

3 Numerical results

The hybrid LATIN-PGD presented herein is investigated for two structures. All the numerical

examples were carried out using ROMlab [Scanff et al., 2020], an in-house software written in

MATLABr language (see Appendix B). The meshes were obtained using the software GMSH.

The graphical post-processing was done with the software Paraview. For both cases, the

material parameters are defined in Table 3.1.

The damping of the structure is represented via a damping matrix [D]. Herein, a Rayleigh

damping matrix expressed as a linear combination of the mass and stiffness matrices [M ] and

[K ] is chosen such that it reads [D] =αr [K ]+βr [M ]. The parameters αr and βr are chosen

so that the damping rate defined from the projection of the dynamic admissibility on the

eigenmodes [Géradin & Rixen, 2015] as

ξ= 1

2

(
αrω0i + βr

ω0i

)
, (3.35)

is equal to 5% for the first two eigenfrequencies f1 = 30Hz and f2 = 78Hz. An example of the

evolution of the damping rate ξ as a function of the frequency is shown in Figure 3.4 where

both f1 and f2 are circled out.

In the methodology, multiple user-defined thresholds have been introduced. In the

following results, the stopping criterion was chosen such that ηc = 2×10−3. To improve
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Chapter 3. Non-linear reduced-order model solver

Young modulus: E = 70GPa

Poisson ratio: ν= 0.3

Density: ρ = 7000kg/m3

Yield stress: σy = 200MPa

Kinematic hardening modulus: C = 2.211×104 MPa

Isotropic hardening ratio: h = 0MPa

Damage threshold energy: wD = 0Jm3/kg

Damage law exponent: sd = 2

Parameter for damage evolution: S = 0.6MPa

Critical damage: Dc = 0.5

Table 3.1 • Material parameters
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Figure 3.4 • Evolution of the damping rate as a function of the frequency. A Rayleigh damping

matrix is used with a damping rate fixed at 5 % for the first two eigenfrequencies

f1 = 30Hz and f2 = 78Hz.
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3. Numerical results

convergence, a relaxation coefficient of µr = 0.8 was also used, as inspired by [Heyberger

et al., 2012]; the global stage is therefore modified so that, from the solution s̊n+1 given

at the end of the PGD process, the relaxed solution at the end of the global stage reads

µr s̊n+1 +
(
1−µr

)
sn . The criterion ξc driving the update or the addition of a new mode is

adaptive with the size of the PGD basis. Initially, it equals 1; once 5 modes have been included

in the basis, it is fixed to 0.15. This evolution allows a quick expense of the basis at the

beginning of the LATIN steps.

3.1 Two-dimensional beam

A fixed-end beam of length Lb = 9m and width Wb = 80cm as illustrated in Figure 3.5 is

investigated. It is meshed with 9,080 T3 elements of mean size equal to 4 cm.

Its end section is submitted to an oscillatory load Ud .

Figure 3.5 • Two-dimensional fixed-end beam

Single-frequency load

First, a single-frequency load plotted in Figure 3.6 and defined by

Ud (t ) =U max
d exp

−
10

(t − T0
2 )

T0

2
sin

(
2π f t

)
(3.36)

is considered, where the final time is T0 = 0.3125s. Nt = 1,024 time steps with uniform

δt ≈ 3×10−4 s were employed, a number of time steps which is a power of two allows to

benefit at best from the FFT numerical efficiency. In the below application, the values of the

loading parameters are f = 40Hz and U max
d = 100mm.

The damage field in the beam at different instants is given in Figure 3.7. From the initial

time step, which corresponds to an undamaged structure, it can be seen that the damage

field increases first close to the solicited extremity of the beam where the bending moment

is maximum. In response to that loading scenario, the beam tends to oscillate along a first-

mode type of movement therefore damage also grows close to the middle of the beam , which

corresponds to the location of an anti-node, where the displacement is therefore important.
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Figure 3.6 • Temporal load 1 - mono-frequency case

The temporal evolution of damage for six Gauss points located on the left side, the middle part

and the right side of the beam (see Figure 3.5) can be seen in Figure 3.8. It can be highlighted

that up to around 0.15s the points on the right side (near to the application points of the

load) were the most damaged, but afterwards the critical points are the points on the left side,

near to the embedding zone. The delay is due to the time required by stress waves to reach

that zone.

Figure 3.7 • Evolution of the damage field for the beam solicited with load 1 - f = 40Hz and

U max
d = 100mm

Only nineteen iterations were required for the LATIN hybrid algorithm to reach the

convergence criterion ηc = 2×10−3 (Figure 3.9). Note that the error does not decrease

monotonously. Such an error decay is a traditional result when using a Galerkin formulation
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Figure 3.8 • Damage evolution at different points of the beam (Figure 3.5) solicited with load

1 - f = 40Hz at U max
d = 100mm

for the PGD implementation as it is done here. The interested reader can refer to [Nouy,

2010] for further information on how the PGD implementation can impact the error decay.

The resulting reduced model comprises only six modes. Thus, most iterations were very

cheap as they consisted in updating the frequency modes and, for only less than a third of

the iterations, spatial computations were performed.
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Figure 3.9 • Convergence of the error indicator and evolution of the number of PGD modes

with LATIN iteration for the beam solicited with load 1 - f = 40Hz and U max
d =

100mm

The six obtained spatial modes are shown in Figure 3.10. The first two modes lead to
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global corrections whereas the following modes, shown for instance in Figures 3.10g and

3.10k, highlight patterns at each end of the beam that follow patterns depicted by the damage

field (Figure 3.7). The PGD modes therefore target corrections specific to the non-linearities

appearing in the structure. To highlight the fact that the strategy allows to build modes that

are specific to the problem, the spatial PGD modes can be compared to the 6 (energetically)

predominant classical linear modes; they are smoother and don’t exhibit localised patterns.

(a) PGD mode n◦1 (b) Eigenmode n◦1

(c) PGD mode n◦2 (d) Eigenmode n◦2

(e) PGD mode n◦3 (f ) Eigenmode n◦3

(g) PGD mode n◦4 (h) Eigenmode n◦4

(i) PGD mode n◦5 (j) Eigenmode n◦5

(k) PGD mode n◦6 (l) Eigenmode n◦6

Figure 3.10 • Magnitude of PGD modes for the beam solicited with load 1 - f = 40Hz and

U max
d = 100mm compared to energetically predominant eigenmodes

Similarities between the spatial PGD modes and the natural eigenvectors of the beam can

be quantified through their energetic scalar product. The obtained values are represented

within the Modal Assurance Criterion (MAC) matrix [Allemang & Brown, 1987] shown in

Figure 3.11. The first PGD mode matches closely the first eigenvector. The second PGD

mode, as well as the third and fifth PGD modes have similarities with the second eigenmode

while the fourth and sixth PGD modes don’t share significantly similar information with the

eigenmodes, as they rather focus on local non-linear behaviour.

It is also interesting to compare LATIN computations associated with an adaptive PGD

basis or with a fixed basis comprising the first 100 eigenvectors. To do so, a relative error

Ξ is evaluated for any iteration n of the LATIN by comparing a reference solution Uover ki l l

being an overly converged LATIN-PGD solution considering ηc = 2×10−4 with Un the current

solution at the n − th iteration either with a PGD approach or with a projection onto the

eigenvectors basis, as follows

Ξ=
(
Uover ki l l −Un

)T [K ]
(
Uover ki l l −Un

)
U T

over ki l l [K ]Uover ki l l
. (3.37)
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Figure 3.11 • Modal Assurance Criterion Matrix of the PGD modes and the eigenmodes for

the beam solicited with load 1 - f = 40Hz and U max
d = 100mm

The evolution of these errors with LATIN iteration is shown in Figure 3.12. During the first

iteration, the error is mostly attributable to the two-alternated search direction scheme that

is far from the converged solution therefore the error given by both computations based on

the eigenvector basis and the one using the PGD is the same. But, the PGD basis provides

quickly a better estimation than the fixed basis. After ten iterations, the LATIN computation

based on the eigenbasis leads to a stagnating error. It seems that the method does not appear

to be able to decrease below that plateau. However, using the PGD basis, the error decreases

significantly below that plateau by generating new optimised modes.

The temporal functions associated with the spatial PGD modes are shown in Figure 3.13;

their frequency counterparts are given in Figure 3.14. It can be seen in both figures that

the first mode significantly outperforms the following modes. On the temporal domain (Fig-

ure 3.13), the temporal information of the damage evolution (Figure 3.8) can be clearly seen

on the PGD modes. The non-linear behaviour is significant only after 0.1s and stagnation

of some modes such as mode 4 can be observed after 0.2s. It can be highlighted that this

stagnation is not for a zero-value, conveying a permanent perturbation due to the non-linear

behaviour. Note that artificial damping is therefore needed. Indeed, even in cases where the

steady state is reached within the considered temporal window, special care must be paid to

avoid Gibbs phenomena due to the existence of possible residual displacements associated

with non-linear phenomena. The frequency modes (Figure 3.14) show that even a simple

mono-frequency load can lead to a complex spectrum of the non-linear response. The first

mode exhibits a main contribution around 30Hz, which corresponds to the first eigenfre-

quency of the structure (second and third eigenfrequencies are 78Hz and 142Hz), but the

following modes show less and less this predominant frequency band and the last modes are

distributed over the frequency domain with a tortuous spectrum as shown in Figure 3.13.

Note that the study of damage evolution is mainly interesting during the transient regime, the
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Figure 3.12 • Evolution of the error with LATIN iteration using an adaptive PGD basis or a

fixed basis comprising the first 100 eigenmodes for the beam solicited with load

1 - f = 40Hz and U max
d = 100mm
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Figure 3.13 • Six estimated temporal PGD modes for the beam solicited with load 1 - f =
40Hz and U max

d = 100mm
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Figure 3.14 • Power spectral densities (PSD) of the six estimated frequential PGD modes for

the beam solicited with load 1 - f = 40Hz and U max
d = 100mm

study has therefore been narrowed down to such a window (see Figure 3.8). The importance

of the artificial damping in that context is exposed in Figure 3.15 where the displacement

along the y-axis at point PI with xPI = Lb/2 and yPI = Wb/2 given by the elastic initialisa-

tion is shown. Considering a temporal computation given by a classic Newmark scheme

(Figure 3.15a), the steady-state displacement is not reached at the end of the considered

temporal window. A frequency computation without artificial damping (Figure 3.15b) leads

to unwanted temporal overlap rendering the solution acausal. Adding artificial damping

(Figure 3.15c) provides proficient results, which is illustrated by the comparisons exposed in

Figure 3.15d.

In details, the artificial damping relies on the damping rate ad (see equation (3.28)). That

parameter value is derived from the choice of a value for the damping coefficient d at the

end of the temporal loading with ad = log(d)/T0. The numerical influence of d has been

investigated for the elastic initialisation for the same point of interest PI in terms of an

overlapping error defined by comparing the vertical displacement components of a temporal

reference solution U r e f with a dampened frequency estimation U f r eq , as follows

ζ= max
t∈I

|U f r eq −U r e f |
maxt∈I U r e f

(3.38)

The evolution of the overlapping error with the value of the damping coefficient (Fig-

ure 3.16) shows a strong and maximum error with the value d = 1, which corresponds with

ad = 0, i.e. without considering artificial damping. The addition of numerical damping only

improves the solution by compensating the artefact introduced by the temporal overlapping.

The decrease of error is strong by increasing the value from 1 to 100, then, it tends to stagnate.

The very weak dependence of the damping coefficient above d = 100 proves the robustness of

the method with respect to high damping values. A minimum appears for d = 1×103, which

has then been used for all numerical results shown in this article.
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Figure 3.15 • Numerical effect of the artificial damping: comparison of the temporal, non-

dampened (showing unwanted artefacts) and dampened frequency computa-

tions for the elastic initialisation at point PI of the beam solicited with load 1 -

mono-frequency Gaussian load with f = 40Hz and U max
d = 100mm
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Figure 3.16 • Evolution of the overlapping error ζ for dampened frequency computation

with regard to the damping coefficient d for the beam solicited with load 1 -

mono-frequency Gaussian load with f = 40Hz and U max
d = 100mm

Bi-frequency loading

A second loading case (Figure 3.17), which is the sum of two sinus functions with different

frequencies, as follows

Ud (t ) =U max
d exp

−
10

(t − T0
2 )

T0

2
(

sin
(
2π fa t

)+ sin
(
2π fb t

))
(3.39)

is considered such that the robustness and behaviour of the method for various frequency

spectra of the load can be studied. The final time is T0 = 0.3125s and Nt = 1024 time steps

were employed. The values of the loading parameters are fa = 40Hz, fb = 80Hz and U max
d =

30mm.
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Figure 3.17 • Temporal load 2 - bi-frequency Gaussian case

Similar convergence behaviour as for the mono-frequency load has been observed. It

is interesting to look at the new spectrum of frequency modes in Figure 3.18. Comparing
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with the mono-frequency case, the contribution of the different modes is more distributed

over the frequency domain, particularly the first mode, which is composed of a large bump.

It is remained that the two first eigenfrequencies are f1 = 32Hz and f2 = 78Hz. Following

modes tend to correct the response more locally over the frequency space. Besides, the

different modes seem to equally contribute to the solution, whereas the first mode was far

more prominent than the others for the previous loading scenario.
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Figure 3.18 • Power Spectral Density of the nine estimated PGD modes for the beam solicited

with load 2 - bi-frequency load with fa = 40Hz, fb = 80Hz at U max
d = 30mm

Complex loading

In order to evaluate the versatility of the proposed method, a modified earthquake load

shown in Figure 3.19 has been considered. This loading lies over I = [0s,3s] and it has been

discretised uniformly with 4400 time steps (δt ≈ 7×10−4 s).
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Figure 3.19 • Temporal load 3 - a complex load
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The load frequency fluctuates, it is high in the first second of the signal, whereas it is

relatively slow in the following two seconds. It is interesting to see that the corrections given by

the temporal modes shown in Figure 3.20 grasp that information, as they give high-amplitude

correction in the first second of the simulation. The rest of the temporal domain shows rather

stagnating correction as the non-linearities tend to stop evolving.
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Figure 3.20 • Temporal PGD modes for the beam solicited with load 3 - a complex load

0 10 20 30 40

Latin iterations

10
-4

10
-3

10
-2

10
-1

0

5

10

15

N
u
m

b
e
r 

o
f 
P

G
D

 m
o
d
e
s

PGD

100 Eigenvectors

Figure 3.21 • Evolution of the error with LATIN iteration using an adaptive PGD basis or a

fixed basis comprising the first 100 eigenmodes for the beam solicited with load

3 - a complex load

Thirteen PGD modes and 35 LATIN iterations are needed to reach the stopping criterion

ηc = 2×10−3. Comparing the PGD basis with the eigenbasis of 100 vectors in Figure 3.21, a

similar behaviour as for the mono-frequency load 1 is observed. After eight iterations, the

accuracy of the LATIN method based on the eigenbasis stagnates to a plateau. The non-linear

behaviour is ultimately much better described with a small number of PGD modes (5 to 13

modes) computed on the fly than with 100 eigenvectors.
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The MAC matrix (Figure 3.22) between the PGD modes and the eigenmodes confirms

the difference between the PGD basis and the eigenbasis. Except from the first and fifth

PGD modes which are very similar to the first and third eigenmodes, respectively, most PGD

modes largely differ from the first 13 eigenvectors.
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Figure 3.22 • Modal Assurance Criterion (MAC) matrix comparing the basis of PGD modes

with classical LNMs for the beam solicited with load 3 - a complex load

3.2 Three-dimensional pipe

A three-dimensional L-shaped pipe, as schematised in Figure 3.23, has also been studied.

The dimensions of the structure are given in Table 3.2. This structure has been meshed with

119,682 second-order tetrahedral elements.

Middle pipe height: H1 = 3m

Top pipe height: H2 = 0.5m

Pipe mid-length: L1 = 1.86m

Pipe top length: L2 = 2m

Pipe external diameter: De = 0.5m

Pipe internal diameter: Di = 0.48m

Pipe bending radius: Rc = 0.25m

Table 3.2 • Geometrical parameters of the pipe

The pipe is submitted to a moving-support type of loading (Figure 3.23). A three-dimensional

load whose components are plotted in Figure 3.24 is imposed to the bottom section through

the boundary conditions of the pipe, as shown in Figure 3.23. More compliant conditions
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Figure 3.23 • Three-dimensional structure with boundary conditions

are applied to the top and middle sections where displacement is only imposed in the z-

direction and in the x-direction respectively. This loading lies over I = [0s,9s] and it has been

discretised uniformly with 4,400 time steps (δt ≈ 2×10−3 s).

Convergence behaviour is given in Figure 3.25. It is interesting to note that, in that case

too, only a few PGD modes, exactly 13 modes, are sufficient to represent accurately the

solution. These modes are evaluated after 35 LATIN iterations. Therefore, more than half of

the iterations simply consist of updating the frequency modes without adding new spatial

modes.

Finally, the quantity of interest, namely the damage field, can be extracted as shown in

Figures 3.26 and 3.27. It appears on the three-dimensional fields shown in Figure 3.26 that

damage mostly grows at the T-junction of the pipe where a stress concentration occurs. We

can observe in Figure 3.27 that damage grows between 1.2s and 2s which corresponds to the

time of occurrence of the dominant peak in the load. After t = 2s the non-linearities stop

evolving because the structure is only stressed such that the stored energy remains below the

damage threshold. Figure 3.27 also shows the final damage field in the pipe on the deformed

structured at time t = 2s with a magnification factor of 10.
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Figure 3.24 • Three-dimensional complex load applied to the pipe’s boundary conditions
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Figure 3.25 • Evolution of the error indicator and the number of PGD modes for the three-

dimensional pipe structure solicited with a complex load
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Figure 3.26 • Evolution of the damage field for the pipe solicited with a complex loading

Figure 3.27 • Damage field in the three-dimensional pipe structure solicited with a complex

load at time t = 2s and damage evolution at the T-junction between the tube

and the middle branch over time
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y Chapter summary

An original hybrid LATIN-PGD framework has been proposed for damageable materials

in dynamics. The computations of the dynamics aspect are handled in the frequency

domain while still solving for the non-linear behaviour in the temporal domain. Predict-

ing the damage evolution of a damageable plastic structure under dynamic loading has

been shown for various load conditions. This work successfully implements a hybrid

time-frequency approach for continuous damage mechanics. The FFT algorithm is

used even with residual displacements due to plasticity by introducing artificial damp-

ing to avoid Gibbs phenomena. The results also highlight the great reducibility of

low-frequency dynamics problems with a plasticity-driven damage behaviour. Indeed,

few PGD modes are needed to represent the solution to the different problems tackled

in this chapter. Fewer modes lead to fewer spatial problems, ultimately reducing nu-

merical cost. The method appears versatile with reduced computational cost due to

the adaptive PGD basis, and it offers rich information with the prediction of a large set

of internal variables over the full time-space domain.

This chapter thus presents an initial partial answer to the general problem addressed

in this doctoral thesis by providing a method to decrease the computational burden

associated with each calculation of the study.

∗∗∗

A Perspectives

It then remains to address the multi-query context, using the redundancy between

the different calculations. In such a multi-query framework, generating PGD modes is

advantageous since these modes can be reused for different calculations. Furthermore,

in a multi-query context, the non-incremental aspect of the solver is also a strength

as it allows to initialise the non-linear scheme with a converged space-time solution

that may be close to the exact solution sought, thus decreasing the computational time

associated with new simulations after a first computation has been performed.

This solver appears as a building block that can be judiciously used in a specific multi-

query framework yet to be defined. The next chapter will focus on detailing such a

framework for multiple-loading scenarios.
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Enhanced reduced-order model for efficient

multi-load computations of non-linear dy-

namics problems

The only true and sustainable prosperity

is shared prosperity.

Joseph E. Stiglitz

This chapter presents a robust multi-query framework for uncertainty loadings

study. Previous solutions are used to wisely initialise the non-incremental solver,

thus decreasing the numerical cost of the multi-query study. A physical-based

strategy using the mechanical content of elastic responses is proposed to find the

most relevant previous computations to boost the current simulation. The optimal

computation sequence, i.e. the optimal path, is designed using a genetic algorithm

based on the physical-based distance indicator.
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Figure 4.1 • Non-parametrised in-

dexed loading scenarios

One goal of this work consists in efficiently com-

puting the evolution of plasticity-driven damage non-

linearities under multiple dynamic loading scenarios,

which can then be applied to risk assessment for in-

stance. The idea is to exploit the model-order reduc-

tion method presented in Chapter 3 as a foundation

for setting up an optimised strategy for conducting

simulations corresponding to each of the loading sce-

narios. At this point, we should remind the reader

that the method presented in this chapter is designed

for the case of seismic risk prediction, where a prior

parametrisation of the loadings is inaccessible, the

latter being supplied as a list of indexed time series

as illustrated in Figure 4.1. Particular attention is

therefore paid to the fact that the methodology does

not rely on such parametrisation, i.e. on an explicit

parametric definition of the signals.

As in the case of material variability [Boucard & Ladevèze, 1998], the reduced basis and

the solution from a previous computation nourish the new calculation. The reuse of the

reduced basis is straightforward. However, initialising the solution requires a specific strategy

because the problems associated with the different loading scenarios do not share the same

boundary conditions. Thus, the displacement field of a previous load case cannot be used

directly to initialise the LATIN scheme since it does not satisfy the admissibility equations of

the new problem. The proposed initialisation consists in superposing the elastic calculation

corresponding to the loading conditions of interest and the inelastic homogeneous correction

associated with a well-suited non-linear solution already evaluated. While the choice of

such previous computation to accelerate the current simulation was straightforward for

parametrised variable material parameters using a distance in the parametric space, new

tools are needed to assess the distance between one computation and another when it
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comes to boundary conditions variability in a non-parametrised context. We propose to

select the best candidate based on the distance between the elastic solutions of different

loading scenarios. The elastic responses of the structure contain some decisive mechanical

information for the distance estimation between the associated damage evolution. Each

elastic response is decomposed by a Singular Value Decomposition (SVD). The distance

between subspaces can be determined on the Grassmann manifolds, which comprise spaces

spanned by the basis of singular vectors of each computation, using the Grassmann distance,

e.g. [Shigenaka et al., 2012; Ryckelynck et al., 2011]. However, this distance does not provide

information about the response magnitude. Therefore, an original indicator is proposed to

assess the proximity between calculations based on singular values and vectors. From this

indicator, the calculations are performed in an order which maximises the proximity between

them using the latest developments in genetic algorithms.

The chapter is organised as follows. Section 2 details the acceleration of the non-linear

scheme by smart initialisation and the reuse of an existing reduced basis in a bi-computations

context where two computations are performed sequentially. Section 3 details the physics-

based distance indicator between two computations to extend that work in a multi-query

context. This distance indicator allows setting up the multi-query framework shown in

Section 4, where a robust strategy is proposed to find an optimal sequence for the multiple

computations. Finally, Section 5 outlines the numerical results obtained using the proposed

framework in a simple multi-query context.

1 Multi-query context

The ROM hybrid frequency-temporal LATIN-PGD scheme has been presented in Chapter 3

and is referred to as the standard LATIN-PGD scheme. The LATIN simulation usually begins

with an empty initial basis B0 =; of space functions. Once a space function has been esti-

mated, the displacement correction is first looked for by only updating the frequency modes

while keeping the space functions unchanged. In detail, at iteration n +1, for instance, if m

modes are already in the reduced basis, the frequency modes {λ̆i (ω)}i∈J1,mK are updated while

{ui (x)}i∈J1,mK remain unchanged. If sufficient, this update stage decreases computational

costs. If not, the space basis is enlarged by computing a new pair comprising one space and

one frequency mode such that∆un+1 =λm+1(t )um+1(x). Each following LATIN stage begins

with an update of frequency functions. The algorithm thus increases the dimension of the

PGD reduced basis adaptively so that the displacement correction reads

∆u(x , t ) =
m∑

i=1
λi (t )ui (x). (4.1)

The problem of interest concerns situations where the prescribed forces F d on ∂Ω2 or

displacements ud on ∂Ω1 are uncertain or consist of a set of different loading scenarios.

Loading uncertainty is particularly crucial when building response surfaces or for risk as-

sessment. Extensive literature exists about the best representation of the response surfaces
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using adaptive sampling [Fuhg et al., 2020], or innovative strategies dedicated explicitly to

risk assessment [Gidaris et al., 2015; Fuhg & Fau, 2022].

Here the goal is not to reduce the number of simulations required for the multi-query

study but to efficiently compute a given set of non-linear dynamic simulations. The enhanced

methodology is designed for computations associated with various Dirichlet boundary condi-

tions with a fixed spatial distribution, which means that the surface ∂Ω1 remains the same for

all computations. Uncertainty in terms of displacement conditions can be either expressed as

raw input data i.e., a set of samples
{

u(i )
d (t )

}
with i ∈ J1;nK and n the number of experiments

included in the design of experiments, or a parametrised displacement ud (t ,α(i )) with
{
α(i )

}
a set of parameter samples.

� Remark Uncertainty in terms of material parameters or in terms of Neumann

boundary conditions could also be included. Uncertain Neumann boundary conditions

can even include changes of the surface ∂Ω2. However, the proposed strategy would

not be required; the parametric approach exposed in [Heyberger et al., 2012] would be

efficient for such cases.

2 LATIN-PGD scheme enhanced from a previous non-linear

dynamics simulation

Let computation (k) be the current LATIN-PGD computation, which can be nourished by

the previous simulation ( j ). Two perspectives are used to reduce the computational cost

for computation (k) as proposed in [Boucard & Ladevèze, 1998] for material parameters.

The strategy is illustrated in Figure 4.2. First, the LATIN-PGD for the current computation

(k) is initialised with an admissible solution improved by the non-linear corrections of the

so-called parent-simulation (PS) denoted ( j ). Second, the PGD basis built for computation

( j ) is employed as an initial basis for computation (k). It is hoped that these two ingredients

provide an initialisation closer to the solution than the naive initialisation.

The enhanced variant of the LATIN solver only modifies the initialisation and the initial

global stage. The following iterations are classically performed with the non-linear hybrid

LATIN-PGD algorithm proposed in [Daby-Seesaram et al., 2023].

2.1 Initialisation of the PGD basis

The LATIN-PGD method relies on a reduced-order description of the displacement field.

The global dynamics problem given in (1) is solved using a frequency-space separation of

variables. Thus, the current simulation (k) is fed with the reduced basis

B( j ) =
{

u( j )
i (x)

}
(4.2)
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2. LATIN-PGD scheme enhanced from a previous non-linear dynamics simulation

Figure 4.2 • Standard and enhanced non-linear LATIN-PGD schemes

from the parent non-linear simulation so that the initial basis for (k) reads

B(k)
0 =B( j ). (4.3)

Therefore, even the first global stage of computation (k) begins with an update of the fre-

quency functions. Updating requires low computational costs and memory, and providing

pertinent initial reduced bases to parametric simulations, the LATIN method can then mainly

behave as a cheap a posteriori method. In [Heyberger et al., 2012], the PGD basis established

for the first value of the material parameter is transferred to the computations for all other

material parameter values, which converge without requiring any additional mode.

The LATIN-PGD method is per se an a priori method. Therefore, if the provided reduced

basis is not suited to describe the displacement field of the non-linear simulation (k), the

reduced basis is automatically extended along with the LATIN iterations. The adaptivity of

the method provides a robust and accurate solver. However, for damage simulations under

variable loading, the PGD basis tends to increase drastically [Alameddin et al., 2020]. Efficient

basis compression using a randomised singular value decomposition has been proposed

in [Alameddin et al., 2019] to retain small-sized optimal PGD bases. Along the same line,

even with a large set of previously computed solutions, the PGD basis of a single previous

simulation is employed in the enhanced LATIN-PGD scheme. Besides, the unexploited PGD

modes are automatically excluded after the updating stage. If a frequency mode vanishes as

∫
I
λ2

i (t )dt 6 ηλ (4.4)

with ηλ a user-chosen threshold, the associated spatial mode ui (x) is removed from the

reduced basis of (k).
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2.2 Initialisation of the LATIN scheme

The LATIN-PGD method is a time-space approach, which needs to be initialised with an

admissible displacement field on the whole time-space domain. Instead of the traditional

elastic solution, computation (k) starts from the displacement field u(k)
0 defined as

u(k)
0

(
x , t

)= u(k)
e +∆u( j ), (4.5)

where u(k)
e is the elastic solution corresponding to loading (k) and∆u( j ) denotes the inelastic

corrections of the parent-solution. Because the elastic solution u(k)
e is kinematically admissi-

ble and the inelastic correction∆u( j ) is kinematically admissible to zero, the displacement

field u(k)
0

(
x , t

)
is kinematically admissible, even though the boundary conditions of compu-

tations ( j ) and (k) differ. Using the initialisation based on computation (k), it is hoped that

the initial trial is closer to the exact solution than the elastic trial. Therefore, the number of

iterations to reach convergence is expected to be reduced.

After the initialisation, the iterative scheme is classically performed. The frequency func-

tions are updated to improve the solution at each global stage, and if needed, the PGD

reduced basis grows.

� Remark Note that starting the computation with a reduced basis which includes

the PGD modes associated with the non-linear initial correction, is crucial. Otherwise,

the algorithm would require at least as many iterations as there are temporal functions

requiring updating, only to rebuild the associated spatial functions.

In the multi-query context, more than one non-linear computation is available to enhance

computation (k). Therefore, the need to decide which previous simulation is the best suited

to initialise the current computation, i.e. to be the parent-simulation, arises.

3 Proximity indicator to evaluate the best candidate between

previous non-linear simulations

In practice, from a set of k − 1 loading scenarios for which the non-linear responses are

already solved, the best provider ( j ) of both the reduced basis and the initial solution for

computation (k) has to be selected. Computations associated with a small distance between

loading properties under dynamic loading can lead to a significant distance between the

damage responses due to resonance effects. Therefore, the distance between the loading

scenarios or parameters cannot effectively discriminate the parent-simulation contrary to

material variability under quasi-static loading where distances in the material parameters

space appear relevant [Boucard & Ladevèze, 1998]. As illustrated in Figure 4.3, an indicator

based on the dynamic elastic responses is proposed to determine the parent-simulation
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computation ( j ) corresponding to the closest non-linear response among the set of k −1

loading scenarios to that of the problem of interest (k). Then, the non-linear solution ( j ) will

be employed for initialising the displacement field and the reduced basis for the non-linear

scheme of computation (k) as exposed in Section 2.

Figure 4.3 • Computation (k) enhanced from a chosen parent-simulation

The distances between the non-linear responses associated with various loads are esti-

mated from the distance between the dynamic elastic responses of the structure under these

loads. Indeed, the elastic structure response contains a rich mechanical content contrary to

the raw loading signals. Each elastic response is factorised by a singular value decomposition.

3.1 Singular value decomposition of each dynamic elastic solution

Each elastic space-time displacement field is discretised using a number nΩ of degrees of

freedom and a number nt of time steps. Thus, the elastic displacement field associated with

loading (k) is represented by a nΩ×nt matrix U (k)
e . The features of each elastic response are

extracted from the truncated singular value decomposition (SVD) of the matrix such that

U (k)
e ≈ S(k)

Ω Σ(k) S(k)T

t , (4.6)

where Σ(k) is a `×` matrix containing the first ` singular values of U (k)
e . The nΩ×` matrix

S(k)
Ω and the nt ×` matrix S(k)

r contain ` left-singular vectors and ` right-singular vectors
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of U (k)
e , respectively. The number ` is chosen to be significantly smaller than nΩ and nt .

The decomposition is performed efficiently using a randomised SVD [Halko et al., 2011;

Alameddin et al., 2019]. The very low computational cost is crucial because the number of

decompositions is equal to the number of load cases, which may be large.

The randomised singular value decomposition offers a direct truncation of the SVD as

it involves randomly sampling the matrix columns. The truncation is based on the number

of independent sampled columns, similar to the randomised range-finder method [Falini,

2022].

3.2 Proximity indicator between dynamics elastic solutions based on the

singular value decomposition

The proximity indicator between two dynamic elastic solutions is based on comparing their

singular values and vectors. Therefore, if the number of singular values and vectors differ

between the two computations to compare, the computation with the maximum number

of singular terms is further truncated to comprise the same number of terms as the other

computation.

Besides, to compare singular values and vectors from computation ( j ) with computation

(k), we first ensure that the order of the two factorisations is such that each singular vector of

the decomposition ( j ) is compared with the most similar vector of the decomposition (k).

Thus, given decomposition (k), decomposition ( j ) is reordered to estimate the rearranged

singular vectors S̃
( j )
Ω and S̃

( j )
t and the rearranged matrix of singular values Σ̃

( j )
with

U ( j )
e ≈ S̃

( j )
Ω Σ̃

( j ) S̃
( j )T

t , (4.7)

such that the scalar products between the left-singular vectors associated with spatial features

of both decompositions are maximised, i.e.,

S̃
( j )
Ω (:, i ) = S( j )

Ω

(
: ,arg max

j∈J1,`K

(
〈S(k)
Ω (:, i )S( j )

Ω (:, j )〉
))

,∀i ∈ J1,`K (4.8)

subject to the condition that each column of S( j )
Ω appears only once in the matrix S̃

( j )
Ω . The

matrix Σ( j ) containing the singular vectors is also sorted accordingly to build Σ̃
( j )

.

The proximity indicator between the elastic responses of computations (k) and ( j ) is

estimated by the following L2-norm

d ( j )
(k),

∥∥∥∥∥
∣∣∣∣diag

(
Σ̃

( j )
)
¯exp

(
Θ

( j )
(k)

)
−diag

(
Σ(k)

)∣∣∣∣
∥∥∥∥∥

2

, (4.9)

where ¯ represents the Hadamard or Schur product and the operator denoted by | • | gives a

vector containing the modulus of each component of the argument vector. The vectorΘ( j )
(k)

defined as

Θ
( j )
(k) = diag(W ) (4.10)
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contains the principal angles between the subspaces of dimension ` spanned by the singular

vectors of the elastic solutions (k) and ( j ), respectively. The operator diag gives the vector

comprising the diagonal terms of a matrix. Matrix W is computed as the singular-values

matrix of S(k)T

`
S̃( j )
`

as explained in [Mohammadi, 2014]. We remark that the L2-norm of

the vectorΘ( j )
(k) provides the Grassmann distance [Deutsch, 1995; Miao & Ben-Israel, 1992]

denoted dGr ∥∥∥Θ( j )
(k)

∥∥∥
2
= dGr

(
S (k),S ( j )

)
(4.11)

between the subspaces S (k) = Span(S(k)
Ω ) and S ( j ) = Span(S( j )

Ω ). The Grassmann distance

gives the distance between two points S ( j ) ∈Gr
(
`,nΩ

)
and S (k) ∈Gr

(
`,nΩ

)
on the Grass-

mann manifold Gr
(
`,nΩ

)
where points S ( j ) and S (k) are defined by the subspaces spanned

by the singular vectors of the elastic computations ( j ) and (k), respectively. Two similar

subspaces correspond with a distance equal to 0, while two orthogonal subspaces correspond

with a distance equal to π
2 . The Grassmann distance gives insight into the modal proximity

of two elastic solutions but ignores the magnitude similarity or discrepancy between both

solutions.

On the contrary, the proposed distance indicator given by eq.(4.9) merges information

from singular values, i.e., vectors diag
(
Σ̃

( j )
)

and diag
(
Σ(k)

)
and singular vectors.

� Remark 1 When the two subspaces spanned by the singular vectors are co-linear,

the exponential term equals 1, which recasts the indicator into a comparison of the

singular values. Thus, the indicator quantifies the proximity between the elastic en-

ergies of the solutions. When the two subspaces spanned by the singular vectors are

orthogonal, the exponential term equals −  . The indicator also includes the amplitudes

of singular values. Thus, it increases with the solutions’ elastic energy.

� Remark 2 It can be noted that the proximity indicator is based on elastic solutions,

whatever the loading. Thus, it can tackle parametrised or random loads generated

without straightforward apparent parameters.

The parent-simulation computation is looked for in the subset of non-linear computations

that have already been performed, i.e. among scenarios (1) to (k −1). Thus, the pertinence of

the PS computation depends on the sequence in which the n loading scenarios are solved.

Indeed, the smaller the distance d ( j )
(k) between the current computation (k) and the PS ( j ), the

more efficiently the PS computation ( j ) is expected to enhance computation (k). Therefore,

we aim to minimise the distance between successive computations by designing an adequate

order for the simulations.
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4 Enhanced reduced-order model for non-linear dynamic

simulations in case of multiple loading scenarios

To efficiently solve a set of non-linear computations corresponding to loading
(
1
)

to (n), the

knowledge acquired by the first computations is exploited to initialise the current computa-

tion smartly. The numerical scheme comprises five major steps. First, the elastic dynamic

responses of the structure associated with all the loading are computed. Second, a proximity

indicator between them is estimated from the singular value decomposition of each response

as exposed in Section 3. Third, an optimal order in which non-linear simulations will be

performed is designed from a genetic algorithm based on the proximity indicator between

the elastic responses. Fourth, the parent-simulation for the current computation is looked

for among the non-linear computations already computed. Finally, the parent-simulation

simulation ( j ) enhances the computation (k) of interest as introduced in Section 2.

4.1 Optimal path through the multi-load simulations

The enhancement of non-linear simulations is optimal if the most pertinent simulations are

included in the set where the parent-simulation is sought. Thus, knowing all the two-by-two

distances between the elastic solutions, i.e. the following distance matrix

D i , j = d (i )
( j ),∀

(
i , j

) ∈ J1,nK2, (4.12)

we aim at minimising the distance between two consecutive calculations, establishing an

optimal path Poptimal for the whole set of computations. The optimal path in this context

is defined as the sequence among the n scenarios which minimises the total path length

traversed by the set of n calculations defined as

L (P ) =
n∑

k=2
d P (k)

P (k−1), (4.13)

with the path P consisting of the ordered sequenced in which computations are performed

and P (i ) giving the i−th computations of the path P. This problem corresponds to the well-

known “Travelling Salesman Problem" (TSP), where the goal is to determine the shortest

route so that the total travel distance passing through each city once and only once for a

given number of cities is minimal. In practice, the optimal path comprises a sequential order

of calculations, which minimises the distances between consecutive computations under

the constraint that all computations are performed once and only once. Thus, ordering the

simulations boils down to solving the following minimisation problem.

Poptimal = arg min
P∈σ

(
J1,nK

)L (P ) (4.14)

with σ
(
J1,nK

)
being the set of all permutations of the n first integers. Obtaining the exact

minimum can be highly computationally intensive. Genetic Algorithms (GAs) are very effi-

cient in addressing this challenge. They provide a suitable solution with a relatively modest
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computational cost [Hussain et al., 2017]. Our study employs a GA proposed by Zhang et

al. [Zhang et al., 2022], incorporating recently proposed crossover operators demonstrating

excellent convergence performances. It can be noted that the entire sequence is designed by

the algorithm, including the initial point.

Once an enhanced sequence that differs from the initial indexed list has been found, the

computations to be performed must be re-indexed as follow

(`) ←
(
Poptimal

(
`
))∀` ∈ J1,nK (4.15)

during a so-called re-indexation stage.

4.2 Choice of the parent-simulation computation

The first simulation is performed using the standard LATIN-PGD. Computation (2) uses the

enhanced scheme from the parent-simulation (1). Before computing any non-linear case

(k) with k ≥ 3, the parent-simulation computation ( j ) is looked for among the set of k −1

previous scenarios, which is the closest to computation (k) i.e.,

j = argmin
j∈J1,k−1K

d ( j )
(k). (4.16)

The appropriate parent-simulation enhances the LATIN-PGD scheme for computation

(k) as detailed in Section 2. The obtained non-linear correction is saved so that it can be

employed to speed-up further simulations.

4.3 Overview

The Algorithm 1 outlines the various steps to enhance the LATIN-PGD scheme for computing

non-linear dynamic responses across multiple loadings. This strategy is founded on three

core principles.

$ Principle I. Smart initialisation of the space-time solution and reduced basis

This first principle makes it possible to start the iterative scheme closer to the exact

solution, thereby reducing the initial error and the number of iterations needed to reach con-

vergence. Initialising the reduced-order basis prevents redundant LATIN steps for computing

pre-existing modes.

$ Principle II. Selection of a well-suited parent-simulation

Relying on elastic solutions to find the optimal PS calculation allows to robustly find

an ideal prior computation for initialising the current one. This approach draws from solid

mechanical knowledge rather than relying on parametrised loading descriptions, for instance,

ensuring method robustness for non-parametrised loading signals.
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$ Principle III. Find an optimal computation sequence

This last step ensures that a suitable parent-simulation is found within the pool of prior

solutions, even at the beginning of the multi-query context, when few computations have yet

been performed.

Algorithm 1: Multi-query method

Loading: {ud
(i )}, i ∈ J1,nK

for k ∈ J1,nK do /* Compute all elastic solutions */

uk
e ← u|



∇·σ+ f d = ρü,

u̇
∣∣

t=0 = 0, u|t=0 = 0 inΩ,

u = u(k)
d and u̇ = u̇(k)

d on ∂Ω1,

σ n = F (k)
d on ∂Ω2,

end

D i , j ← d (i )
( j ),∀

(
i , j

) ∈ J1,nK2 /* Compute the distance matrix */

Poptimal ← argminL (P ) /* Find the optimal path using the GA */

(`) ←
(
Poptimal

(
`
))∀` ∈ J1,nK /* Re-indexation stage */

for k ∈ J1,nK do

j ← argmin
j∈J1,k−1K

d ( j )
(k) /* Find the parent-simulation */

B(k)
0 ←B( j ) /* Initialise the reduced PGD basis */

u(k)
0 ← u(k)

e +∆u( j ) /* Initialise the LATIN-PGD scheme */
while η6 ηc do /* Call the LATIN-PGD solver */

LATIN-PGD iterations

end
Save∆u(k) /* Save the k−th non-linear correction */

end
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5 Numerical studies

The problem consists of a notched fixed-end beam of length Lb = 9m and width of W = 80cm

as shown in Figure 4.4a, which is submitted to a bi-parametric load plotted in Figure 4.4b.

(a) Notched beam
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(b) Bi-parametric loading

Figure 4.4 • Reference problem

The multi-query study proposed to illustrate the method consists of finding the structure’s

response for a set of 600 pairs of parameters. The parameter space was uniformly sampled in

a grid of 20 samples in the amplitude direction and 30 samples in the frequency direction. The

frequency range spans across a wide range of frequencies, including the first eigenfrequency,

starting at 5Hz and ending at 90Hz. The amplitude of the loading goes from 2mm to 60mm.

In this context, the number of computations is fixed. All the 600 computations associated

with the set of parameters must be solved. The final study’s results give the full space-time

non-linear solution of the structure subjected to the multiple-loading scenarios.

The maximum damage value reached in the structure over the whole time domain is

shown in Figure 4.5. It can be seen that the maximum damage largely depends on the load

parameters. It regularly increases with the amplitude. The dependence with frequency

fluctuates with two peaks. Indeed, the frequency range is centred on the first eigenfrequency

of the structure f1 = 44Hz and comes close to the second natural frequency f2 = 98Hz.

5.1 Initialisation strategy in the multi-query context on the full order

model

This section illustrates the part of the methodology within the intended use case scenario,

i.e. where many computations are performed across a wide range of parameters using the

full-order model. Notably, this section focuses solely on the space-time solution initialisa-

tion aspect of the proposed framework without investigating the model-order reduction

techniques aspects. Consequently, the results presented herein exclusively concern the
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(a) Side view of the response surface (b) Front view of the response surface

Figure 4.5 • Maximum damage as a function of the loading parameters

initialisation of the solution within the non-incremental computation strategy. The par-

tially enhanced strategy presented in this section will be referred to as the semi-enhanced

strategy. The semi-enhanced strategy comprises the principles two and three described in

the overview 4.3, but as it involves full-order computations, only half of the first principle

is applicable. A comparative analysis is conducted between the standard method, involv-

ing independent execution of the 600 computations, and the semi-enhanced methodology.

Figure 4.6 demonstrates that a noteworthy 30% reduction in the total number of iterations

required to reach convergence across all 600 computations is achieved by employing the

semi-enhanced approach. Initially, both the standard and the semi-enhanced methods

exhibit comparable results as they produce elastic solutions during the early computations.

However, as non-linearities come into play, the semi-enhanced methodology outperforms

the standard method by demonstrating a lower computational cost.

These results highlight the potential of the smart initialisation technique to speed up the

convergence process when non-linearities emerge, ultimately enhancing the computational

efficiency of the overall analysis.

The first aspects of the proposed method have been shown on full-order computations to

grasp the magnitude of the improvement offered by the sole initialisation process. The full

methodology, however, also relies on generating fewer modes in a reduced-order model con-

text by reusing the previously computed reduced-order basis for the current computations.

5.2 Reduced-order model improvements

The whole methodology is shown in this section, where both the initialisation and the reuse

of reduced bases help decrease the computational cost. The method is first presented in

the case of two successive computations. A multi-query application is then investigated to

showcase the full potential of the proposed methodology.
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Figure 4.6 • Comparison of the number of total iterations required for the semi-enhanced

and the standard methods

Two successive computations

The enhanced strategy, which includes reduced-order model aspects, is first investigated in

the case of two successive computations ( j ) and (k).

Computation (k) is performed with a loading of f = 40Hz and U max
d = 30mm. It is then

accelerated with computation ( j ) that has previously been carried out with f = 41Hz and

U max
d = 35mm.

Figure 4.7 gives an overview of the evolution of the size of the basis and the number of

iterations when solving both the PS computation ( j ) and the current simulation (k) sequen-

tially. The enhanced method is compared to the classical scheme. When using the classical

scheme, both the parent-simulation and current computations lead to roughly the same

number of iterations to reach the convergence criterion η= 2×10−3 and require generating

more than 15 modes. In contrast, as shown by figure 4.7, the second calculation leads to

significantly fewer iterations when using the enhanced framework. The number of iterations

of computation (k) is reduced from 25 for the classic method to 11 for the new method.

This drop is due to the combined effect of the smart initialisation highlighted by a lower

initial error and the use of the previous reduced-order basis as an initial basis, allowing the

generation of fewer new modes, further decreasing the number of iterations.

Furthermore, Figure 4.7 highlights the fact that the PGD basis in the case of the enhanced

scheme gradually increases, adding only the missing modes from one computation to the

other, contrary to the classical scheme that needs to rebuild from scratch a satisfactory PGD

basis for each computation. Indeed, only 5 PGD modes are added during the enhanced

current computations to reach 22 modes, while 21 modes are needed and generated for the

standard scheme. Finally, Figure 4.7 suggests that the more computations there will be, the

more efficient the enhanced methodology will be. Indeed, the more computations there are,

the less the initial cost of the first computation will be significant. The proposed approach is

all the more interesting in a multi-query context.
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Figure 4.7 • Parent-simulation and enhanced current computations sequence compared

with parent-simulation and standard current sequences

In the multi-query context

In a multi-query application, the proposed enhanced strategy leads not only to a decrease in

the number of iterations required but also to a drastic decrease in the number of PGD modes

generated during all the calculations carried out through the multi-query process.

� Remark The maximum number of iterations for the reference methodology using

reduced-order model computations differ from those needed without model-order

reduction techniques. However, the comparison between the enhanced and semi-

enhanced methods helps to understand that both the initialisation of the reduced-order

basis and the initialisation of the solution allow the number of iterations required to

reach convergence for all 600 computations to decrease.

Figure 4.8a shows that while the number of generated modes grows indefinitely for

the standard LATIN-PGD method where all computations are tackled independently, it

rapidly stagnates to a low number when using the enhanced LATIN-PGD proposed in this

paper. A significant improvement is also apparent when we look at the number of iterations

required to reach convergence of the 600 calculations. Indeed, Figure 4.8b shows that the

enhanced LATIN-PGD leads to 2.9 times fewer iterations, thus significantly decreasing the

computational cost of the multi-query study.

� Remark Without specific work to decrease the cost of the local stage and when

considering numerous time steps, the local stage can be numerically expensive. Using
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(a) Growth of the PGD basis size
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Figure 4.8 • Comparison of the standard method with the enhanced strategy.

the PGD at the global stage increases the number of LATIN iterations to reach conver-

gence and, therefore, increases the number of local stages to be solved. However, the

PGD also allows for drastically decreasing the number of iterations in the proposed

multi-query framework, thus decreasing the numerical burden associated with the

study in a multi-query framework.

The strategy relies heavily on the fact that a calculation close to the current calculation can

be found in the set of calculations already carried out. Therefore, the order of the calculations

plays a crucial role in obtaining significant results.

Influence of the computation sequence

In order to investigate the influence of the order in which computations are performed

plays in the results previously showcased, several random sequences have been run. For

those random runs, the enhanced methodology has been carried out without the optimal

path aspect. Only the order of the computations changes. 5 random sequences have been

generated to get an idea of how significant of an impact the order of the computations has.

Figure 4.9b compares those random runs to the optimal path obtained from the genetic

algorithm as presented in Section 4.1. The grey area outlines the worst and the best of the five

random runs. The genetic algorithm introduced allows finding a cumulative path through

the computations significantly shorter than the one obtained by a random route. Such a

decay is shown in Figure 4.9a, which highlights a quick convergence of the genetic algorithm.

For clarity, in post-processing, the results of different runs have been sorted to align with

the corresponding computations in all plotted cases. As a result, the computation labelled as

the ‘i-th’ may not have occurred at the ‘i-th’ position in all sequences.

The comparison of the random runs with the optimal path clearly shows that even though

random runs still manage to yield a significant decrease in the number of modes generated
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Figure 4.9 • Optimal path strategy illustration

(between 5 to 10 times less than the standard method), significant variability is to be expected

from one random run to another. Moreover, the optimal path offers a robust way to achieve

significantly better results as the number of generated modes using the optimal sequence

leads to 2 times less mode than the better random runs. The optimal path leads to a drastic

reduction in the number of modes needed for all 600 computations. Indeed, the optimal

path leads to 20 times less mode generated than the standard method. All non-linear com-

putations converge with a number of PGD modes comprised between 5 and 49, and a rSVD

decomposition of each computation leads to the same number of modes as the number of

PGD modes needed to reach convergence in most cases. However, in the proposed method-

ology, because only the basis of the parent-simulation is reused, a total of 253 modes have

been generated, and an SVD compression of all those modes (which do not form a basis

as they are never used all at once), lead to only 54 modes. The PGD, therefore, leads to an

optimal-sized basis for each computation. However, even though the methodology leads to a

massive improvement in the number of modes being generated, the compressed optimal

basis is smaller than the number of generated modes.

Figure 4.10a demonstrates that the optimal pathway given by the genetic algorithm

does not invariably result in utilising the immediately preceding computation as the parent-

simulation. The optimal path may need to locally provide a sequence of computations further

from one another to decrease the overall length of the path. Consequently, the additional

step in looking for the closest computation from the set of previously computed solutions

while executing the optimal sequence instead of relying solely on the preceding computation

guarantees the selection of the most pertinent parent-simulation. Figure 4.10a, however,

shows that relying on an optimal path contributes, on average, to the reduction of the parent-

simulation width (PSW)

W (k) = k − j , (4.17)

between the current computation
(
k
)

and the parent-simulation
(

j
)

identified from previous
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Figure 4.10 • Indexes and distances indicators values of PS computations for the optimal

path strategy compared with those of a random path

computations. Indeed, when relying on an optimal sequence, the PS index consistently

exhibits proximity to the index of the ongoing simulations. In contrast, the PS index in a

random sequence is randomly distributed in the integer range J1,k −1K. Table 4.1 details a

comparison of the PSW between a random and optimal sequence given by the GA. The GA

yields a substantial reduction in PSW, with 82% of computations resulting in an PSW of 1

within the optimal sequence framework. In contrast, the random sequence scenario leads to

94% of computations with an PSW higher than 5. The Cumulative distribution function of

(a) Cumulative distribution function of the PS

width for the optimal path

(b) Cumulative distribution function of the PS

width for a random path

Figure 4.11 • Comparison of Cumulative distribution function of the PS width for the optimal

path and a random path

PSW for both an optimal and a random sequence are presented in Figures 4.11a and 4.11b,

respectively. These figures describe the distribution of simulations resulting in a width below
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different values in both scenarios. While the optimal sequence scenario predominantly

corresponds to shallow PSW values across most computations, the random sequence is

associated with a significant proportion of computations exhibiting a broader PSW.

∀k ∈ J1,600K #
{
W (k) = 1

}
#
{
W (k)6 5

}
#
{
W (k)> 500

}
µ1/2

(
W (k)

)
Optimal path 495 546 0 1

Random path 6 27 10 116

Table 4.1 • Comparison of the indexes of the PS computations for the optimal path and a

random path

� Remark In a limited memory scenario, using an optimal sequence given by

the GA may allow deleting some previous results and keeping only a small buffer of

previous computations, while a random sequence may lead to the early results still

being needed for new computations therefore making it impossible to delete any

previous computation.

The main goal of relying on an optimal sequence of computations is to identify a close PS

computation
(

j
)

for each current computation
(
k
)

therefore keeping the value of the distance

indicator d k
j low for all k ∈ J1,nK. Figure 4.10b illustrates the average of the normalised value

of d k
j relative to the maximum value of that indicator when using the optimal sequence,

which is defined as

d k
j

Normed =
d k

j

d up
, (4.18)

where d up = maxk∈J1,nK d k
j in the case of the optimal path. For each computations, the average

on all previous computations

d k
j = 1

k

k∑
i=1

d i
j

Normed
(4.19)

of the normed distance is then plotted. The GA effectively ensures low distances between

computations and their respective PS across the whole set of simulations. That statement

holds even in the initial stages, with a few simulations performed. Conversely, when using a

random sequence, the distance from a computation to its associated PS can be up to six times

larger than the worst-case scenario observed in the optimal sequence. The mean distance

decreases when the number of simulations increases, given the broader pool of potential

parent-simulations from previously computed solutions. The optimal path, however, con-

sistently yields superior performance across the entire batch of computations. Table 4.2

provides a detailed comparison of a random sequence with an optimal sequence, revealing,

for instance, that, despite similar minimal distance indicator values in both cases, the mean

value of the indicator is sixteen-fold higher in the context of the random sequence thus

proving that the optimal path allows the selection of more suitable parent-simulations.
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min

(
d k

j
Normed

)
max

(
d k

j
Nor med

)
mean

(
d k

j
Nor med

)
µ1/2

(
d k

j
Nor med

)
Optimal path 7.5×10−3 1 1.9×10−1 1.5×10−1

Random path 7.5×10−3 8.3 3.0 1.7×10−1

Table 4.2 • Comparison of the normalised distance indicator from PS computations to the

current simulations for the optimal path and a random path

5.3 Interpretation of the results in the parametric space

To further understand how the strategy impacted the different computations, Figure 4.12

shows maps of the number of generated modes for each parametric pair for both the standard

method and the enhanced strategy. Figure 4.12a shows that the more non-linear a compu-

tation is, the more modes are needed to reach convergence. On the contrary, Figure 4.12b

highlights that the PGD basis only expands around areas where new damage patterns arise.

Once these places in the parametric space have been explored and the PGD basis has been

extended accordingly, the following computations are done using the given PGD basis as if

they just consisted of POD computation. The PGD method, therefore, reverts to being used

as an a posteriori reduced-order method. In this context, the PGD is therefore used both as

an a priori and an a posteriori model-order reduction technique, demonstrating its versatility.

The PGD basis is extended when further knowledge is needed. However, when the PGD basis

is well suited for the current computation, only the temporal modes are updated, and the

basis size remains unchanged. This way, new information is built on the fly when needed

without having to choose the suitable snapshots and without paying the numerical cost of

building from scratch a new basis for each computation.
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Figure 4.12 • Number of generated modes in the parametric space

Similar maps are presented in Figure 4.13 where the number iterations are shown for

the different parameter pairs. Figure 4.13a shows that the number of iterations needed
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to converge for highly non-linear computations is greater than that for weakly non-linear

simulations. Figure 4.13b showcases the numerical gains made possible by the enhanced

strategy. Indeed, the most complex computations only require 30 iterations to converge using

the proposed strategy, while it needs 100 iterations to reach convergence using the standard

LATIN-PGD method. Building a suited PGD basis beforehand and wisely initialising the

non-linear scheme, therefore, helps decrease all the non-linear computations.

� Remark To have visible results on the graph showcasing the enhanced results, the

colour scales for the enhanced and the standard LATIN-PGD method are different. The

enhanced scheme requires new modes for fewer scenarios, and the number of modes

added is also significantly smaller.
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Figure 4.13 • Number of iterations in the parametric space

5.4 Influence of the number of computations in the multi-query study

The numerical benefits of such a framework heavily depend on the number of computations

to be performed. Figure 4.14 investigates the relation between the benefits given by the

enhanced methodology and the number of simulations in the study, i.e. the number of

queries to the solver. It appears that numerical benefits arise rapidly, even with a relatively

low number of simulations. After 70 computations, the numerical cost is at least halved

and the benefits of the framework keep improving with the number of queries; the more

computations are needed, the more benefits the proposed methodology will offer. Between

150 and 600 simulations, a steady behaviour of the framework is reached where the numerical

benefits of the methodology increase linearly with the number of queries of the study.
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Figure 4.14 • Speed-up as a function of the number of computations in the multi-query study

� Remark 1 The benefits of the method also heavily depend on the level of non-

linearity of the different solutions of the multi-query study. The more non-linearities the

results exacerbate, the more benefits the new framework will bring. If linear simulations

happen to be included in the design of the study, no benefit will appear for these

calculations.

� Remark 2 For a large number of queries, this variability is averaged. However,

when few queries are considered, accounting for the variability while assessing the

benefits of the method would require the raw results presented in Figure 4.14 to be

average on simulations sample sets.
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y Chapter summary

An original multi-query framework for non-linear dynamics has been proposed. This

framework successfully takes advantage of similarities between computations to reduce

the computation cost of a multiple-loading study significantly. It has proven to be very

effective at decreasing the number of iterations needed to reach convergence for a

large number of computations sequentially performed. Similarly, when coupled with

a reduced-order solver, the proposed strategy offers significant computation gains by

drastically decreasing the number of modes to generate. A comparison of the semi-

enhanced and enhanced strategies showed that both aspects of the method (reusing the

previous basis and reusing the previous converged solution) play a significant role in

the final decrease of the computation cost. Moreover, it has been shown that the order

in which the computations are performed can significantly change the performance

of the proposed framework. An additional step of finding an optimal sequence of

computations has been proposed, leading to a robust framework that achieves optimal

performances. The ingredients of this new framework are deliberately not based on

an a priori parametrisation of inputs, making the methodology transferable to studies

with non-parametrised inputs.

∗∗∗

A Perspectives

If the requirement for a precise solution across all mechanical fields is relaxed and

the objective shifts, for instance, to merely classifying computations based on the

scalar value of a given quantity of interest, low-fidelity calculations may be adequate

to achieve satisfactory classification at a reduced computational cost. A multi-fidelity

strategy is therefore being investigated. It relies on the proposed distance to employ

coarse convergence criteria for computations leading to non-critical damage values,

i.e. damage values that are far from the classification threshold and for which a slight

estimation error would, therefore, not bias the classification outcome.
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Part III
Application of the novel framework

for failure probability assessment
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Chapter 5
Multi-fidelity model-order reduction for fragility

curves

This chapter presents an extension of the multi-query framework where the LATIN

solver’s multi-fidelity capability is exploited to decrease further the computational

cost associated with the risk study. The framework is tested on indexed signals

whose prior parameterisation is not exploited. As announced in the introduction,

a fragility curve is built using the proposed methodology.
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This chapter aims at extending the multi-query framework developed in Part II of this the-

sis to a context where the interest is no longer to compute the whole non-linear solution but

rather to get access to a given quantity of interest (QoI), based on which specific operations

are performed. In certain situations where several calculations are carried out, it is not always

necessary to precisely know the value of the quantity of interest for each simulation. When

trying to optimise a structure, for example, the value of the quantity of interest only needs to

be precisely known close to the optimum. In the application illustrated in this chapter, the

operation to be performed based on the quantity of interest is a classification of calculations

depending on whether the quantity of interest is above or below a given threshold. Some

of the calculations that lead to a QoI value close to the threshold will be regarded as critical

because a small error in estimating the QoI would lead to a classification error. In contrast,
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others for which the QoI is far from the threshold could be known coarsely without impinging

on the classification operation.

In practical terms, this chapter gives a methodology to build a fragility curve associated

with a given loading scenario set. For each scenario, the maximum damage value in the

structure is computed to calculate a failure probability

P f (α) = 1−P
(
D(x , t ,α) < Dc ,∀x ∈Ω,∀t ∈ I

)
, (5.1)

with Dc a chosen damage threshold and α is a scalar parameter describing the severity of the

loading.

1 Construction of the virtual chart

Referring to the example from the previous chapter for conceptual clarity, Figure 5.1 is de-

rived, illustrating the response surface of normalised maximum damage intersected by a

horizontal plane dividing the computations into two categories. One category leads to struc-

tural failure, corresponding to points above this plane, while another involves simulations

preserving structural integrity, corresponding to points below this surface. The objective of

this chapter shifts from obtaining the complete mechanical fields of the nonlinear response

of the structure to achieving a cost-effective and precise classification of these computations.

Indeed, as long as the classification of simulations remains accurate, the accuracy of other

mechanical quantities is of little significance to construct a fragility curve, i.e. computing the

probability given in Equation 5.1.

(a) Side view of the response surface showing the

normalised maximum damage in the struc-

ture.

(b) Front view of the response surface show-

ing the normalised maximum damage in the

structure.

Figure 5.1 • Normalised response surface of damage in the structure with the critical damage

Dc plane

Classifying each computation based on the value of a single quantity only requires that

quantity to be accurately known for critical cases. Therefore, less expensive low-fidelity
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2. Multi-fidelity solver

solutions are often sufficient. Such low-fidelity solutions being numerically cheaper, relying

on coarse computations helps decreasing the numerical cost of the multi-query classification

study. This chapter aims at taking advantage of this observation without impacting the

classification operation and, therefore, the resulting fragility curve. To achieve this goal, the

idea is to use different convergence thresholds for the simulations included in the study to

reduce the computational cost without affecting the result.

2 Multi-fidelity solver

The non-incremental aspect of the LATIN solver gives access to multiple levels of fidelity for

the solution. The current section investigates the impact of a coarser stopping criterion η`c
on the quantity of interest e.g. the damage value. Varying the level of convergence changes

the precision of the damage value obtained from the computation; therefore, assessing the

error made when using a low-fidelity solution is crucial.

2.1 Influence of the stopping criterion

In the following scenarios, the reference damage map has been obtained using a stopping

criterion

ηh
c = 2×10−3. (5.2)

Several coarser criteria have then been used, leading to solutions with varying degrees of

error. The maximum damage error maps obtained for each coarse stopping criterion value

are shown in Figure 5.2. The error

Ξη`c
=

∣∣∣∣D (k)
max

(
η`c

)
−D (k)

max

(
ηh

c

)∣∣∣∣
max j∈J1,nK D ( j )

max

(
ηh

c

) (5.3)

shown corresponds to the approximation error made using a low-fidelity solution relative to

the maximum damage value of all studies. Figures 5.2b and 5.2c respectively show the error

made when considering ηc = 2×10−2 and ηc = 5×10−2 while figure 5.2a shows the reference

damage map in the parametric space.

Increasing the stopping criterion by an order of magnitude only leads to a 3% error for

the maximum damage assessment.

Figure 5.3 shows that the classification goal is even less impacted by using a lower fidelity

solution than the complete response surface. Table 5.1 summarises the classification error

made using each coarse stopping criterion. Only 0.6% of the computations are ill-classified

when an order of magnitude coarser stopping criterion is used.

While classification is only slightly affected by the choice of a much coarser stopping

criterion, the numerical benefits of doing so are substantial. Figure 5.4 shows the number of

iterations required when using a fine stopping criterion and the difference in the number of
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Figure 5.2 • Approximation error for different values of coarse stopping criterion η`c
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with η`c = 5×10−2

Figure 5.3 • Influence of the stopping criterion on the classification precision between com-

putations leading to failure (red) and safe results (black).

ηc Error max Number of ill-classified simulations

2×10−2 3.5% 4

5×10−2 15% 9

Table 5.1 • Relative error in maximum damage and classification error for different values of

stopping criterion ηc .
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Figure 5.4 • Difference in the number of iterations for different values of stopping criterion

ηc .

modes

∆nη`c = nηh
c
−nη`c (5.4)

between a simulation relying on a fine and coarser stopping criterion. For the most demand-

ing scenario, the number of iterations required to reach convergence can drop from up to

80%. In general, Figures 5.4b and 5.4c show that the difference in the number of iterations is

of the same magnitude as the number of iterations required with the fine criterion shown in

Figure 5.4a, indicating a general significant decrease in the number of iterations needed to

reach convergence for low-fidelity simulation.

Similarly, Figure 5.5 shows the number of modes required when using a fine stopping

criterion and the difference in the number of modes

∆mη`c
= mηh

c
−mη`c

(5.5)

between a simulation relying on a fine and coarser stopping criterion. For the fine stopping

criterion, 50 modes are generated for the most complicated cases, and those simulations con-

verge with up to 40 modes less when using coarser criteria. More generally, the calculations

converge with fewer modes when relying on a coarse stopping criterion.
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Numerical benefits from low-fidelity solutions are more important for high frequency and

high amplitude, i.e. highly non-linear loading scenarios. At the same time, the classification

errors appear to be localised towards the decisive regions where the maximum damage

Dmax is close to the damage threshold Dc . Utilising different values of stopping criterion for

those two cases would decrease the numerical cost while keeping an accurate classification

between simulations leading to failure and those that do not.

2.2 Multi-fidelity strategy

To achieve the most accurate classification, this chapter proposes to dynamically adjust the

stopping criterion of LATIN, allowing reliance on lower-quality solutions when the outcome

of the ongoing classification is almost certain. Additionally, it suggests employing refined

simulations for points with a more critical classification due to their proximity to the failure

threshold Dc . The proximity indicator

d ( j )
(k),

∥∥∥∥∥
∣∣∣∣diag

(
Σ̃

( j )
)
¯exp

(
Θ

( j )
(k)

)
−diag

(
Σ(k)

)∣∣∣∣
∥∥∥∥∥

2

(5.6)

presented in Chapter 4 is used to select a suited stopping criterion. If the PS associated

with the current computation lead to a maximum damage value Dmax that is further than a

given valueΞη from the threshold Dc then we assume that the current calculation will output

maximum damage that is also far from the threshold. Therefore, this simulation is not critical

to the classification process and does not require a fine knowledge of the exact value of Dmax.

The stopping criterion for such a computation can be relatively coarse. Conversely, a fine

stopping criterion is used if a simulation is paired with a PS, highlighting a damage value

close to the failure threshold. Figure 5.6 depicts a region confined between two horizontal

blue planes, within which lies the red plane Dmax = Dc . This region highlights simulations

that demand fine computations. In this zone, η= ηh
c is employed; conversely, outside this

region, η`c is utilised.

The method for dynamically selecting the stopping criterion is graphically sumarised in

Figure 5.7.

� Remark Although rather naive, this approach should be studied to verify its

relevance. Indeed, the advantages of a coarse stopping criterion could be offset by

lesser benefits when reusing the weakly converged inelastic corrections in the enhanced

framework.

2.3 Numerical results

This section shows the numerical results associated with the multi-fidelity strategy that has

been coupled with the enhanced framework presented in Chapter 4.
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Figure 5.8 • Comparison of the number of iterations for the standard method, the enhanced

method and the enhanced multi-fidelity method

Figures 5.8 compares the new multi-fidelity strategy with the sole enhanced framework

and the standard method. The multi-fidelity method has been tested with the hyperpa-

rameters pair η`c = 2×10−2 and Ξη = 1/2Dc . Such a combination entails no classification

error and, therefore, no error in the fragility curve we are trying to obtain. The plot shows,

however, that the multi-fidelity strategy offers additional gains compared with the enhanced

method, thus significantly decreasing the numerical burden of the standard method. A factor

of four is observed compared to the standard method. These results illustrate that substantial

numerical gains can be obtained without compromising the quality of the prediction of the

probability of failure of the structure.

The enhanced multi-fidelity strategy allows quick access to a response surface, i.e. a

surrogate or meta-model. This model can then be accessed as a results library, thus allowing

a rapid estimation of the maximum damage in the structure for a large range of inputs.

Fragility curves construction is an example of an application that can greatly benefit from

such charts. Once the response surface has been computed, assessing the probability of

failure becomes a simple post-process of the latter.

3 Fragility curves

Fragility curves give access to the failure probability of the structure subjected to uncertain

loading scenarios as a function of the scalar parameterα describing the severity of the loading.

That parameter can, for instance, be the peak displacement, i.e. the maximum displacement

α=U max
d in our study. A given set

{
U max (i )

d

}
i∈J1,N f K

of loading severity defines the number

of points in the curve. For each point, i.e. for each value of U max
d , Ns frequency realisations

must be sampled according to a given probability distribution. Figure 5.9a shows the boolean

surface obtained with the surrogate model. The construction of the fragility curve will be

based on readings of that surface. Figure 5.9b shows how weight is associated with each point
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of the classification surface for the frequency sampling.

(a) Classification between computations

leading to failure (grey) and safe results

(dark blue).

(b) weighting procedure using a gaussian distribution.

Figure 5.9 • Classification and weight attributed to each point of the classification surface for

the sampling procedure
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Figure 5.10 • Influence of the number of

draws on the fragility curve

For the fragility curve to converge, the

number N f of frequency samples for each

displacement value must be very large. Us-

ing meta-models reduces the cost of con-

structing fragility curves since the numer-

ous calls to the solver for each random fre-

quency draw become a simple matter of

reading the previously constructed virtual

chart instead of new computations. Fig-

ure 5.10 shows the fragility curves obtained

with a normal distribution for the frequency

draws

f ∼N
(
60Hz,10Hz

)
(5.7)

for different numbers of sample Ns . The influence of the number of draws for frequency

sampling appears significant, justifying the need to consider a large number of draws. As the

number of draws is less than a thousand, artefacts appear in the form of fluctuations along

the fragility curve, indicating that the curve is not converged.
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y Chapter summary

The enhanced framework presented in Chapter 4 has been applied to a context where

only specific quantities of interest are required. The goal of the present chapter was to

extend the enhanced framework to classification study where coarse solutions suffice

for some of the computation when there is little doubt about the outcome. Nonetheless,

to ensure a precise classification, a multi-fidelity approach has been used where fine

computations are performed on decisive computations only and coarser simulations

are used elsewhere. This extension is straightforward based on the tools developed in

Chapter 4 and allows significant numerical benefits without compromising the integrity

of the classification outcome.

∗∗∗

A Perspectives

Such a framework should now be used on real non-parametrised seismic inputs. Sev-

eral in-depth studies should also be carried out to robustly set the values of the new

hyperparameters of the method, namely the range Ξηc in which fine computations are

required and the optimal value of the coarse stopping criterion η`c . The gains shown

in this chapter correspond to choices of method parameters that do not lead to any

classification errors. The question of a possible acceptable error in classification can be

raised. In such a case, the numerical gains could be greater at the cost of a less accurate

classification. This discussion is complementary to implementing a robust method for

the choice of parameters.
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This PhD dissertation focused on building an optimal multi-query framework for non-linear

dynamics based on reduced-order model techniques. More specifically, the main objective of

this work was to build virtual charts to predict the probability of failure of structures subjected

to uncertain loading scenarios. The proposed framework, therefore, needed to be suited for

tackling many non-parametrised loading scenarios in the most efficient manner possible,

unlike many methods in the literature, which are adapted to explicitly parametric studies.

Several theoretical and practical contributions were made to address these challenges, thereby

removing some of the identified obstacles and opening the way to new perspectives to extend

the work presented in this manuscript.

The proposed method’s first brick consists of an efficient reduced-order model solver

based on the LATIN-PGD method, where the dynamic computations are solved in the fre-

quency domain while addressing the non-linear behaviour in the temporal domain. This

solver can handle transient dynamics and compute non-periodic solutions with the FFT

by relying on artificial damping to prevent Gibbs phenomena. The Proper Generalised De-

composition proved to be well-suited to describe the non-linear displacement corrections

impacted by very localised damage effects. A comparison with a reduced-order basis com-

prising Linear Normal Modes revealed that the PGD provided a better solution approximation

with fewer modes, particularly for highly localised patterns requiring high-frequency vibra-

tion modes for accurate representation. The chosen approach requires only a small number

of PGD modes to represent solutions for various problems, minimising the computational

cost.

Then, a new multi-query framework for non-linear dynamics, built on the LATIN solver,

has been introduced. This framework effectively relies on computation similarities to substan-

tially reduce the computational cost of multiple-loading studies. This enhanced methodology

is built on three principles:

¦ Principle I: Smartly initialising the iterative solver with a parent-simulation,

¦ Principle II: Identifying a well-suited parent-simulation,

¦ Principle III: Designing an optimal sequence in which computations are performed.

The enhanced methodology has successfully decreased the number of iterations required

for convergence in sequential computations. Moreover, when used with a reduced-order
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solver, this approach yields significant computational benefits by reducing the required

number of modes to compute. Comparing this enhanced strategy with both full-order and

reduced-order models revealed that reusing both the previous basis and converged solution

significantly contribute to lowering numerical costs. Additionally, the sequence in which

computations are executed notably impacts the method’s performance. Introducing an extra

step to determine an optimal computation sequence results in a robust framework that

achieves optimal performance. The entire framework led to up to three times fewer iterations

and twenty times less PGD modes generation compared to the standard LATIN scheme

looped over the set of loadings in the case of a pool of 600 computations. The enhanced

framework has proven very effective in a multi-query context and highlights increasingly

good results as the number of queries increases.

Finally, the enhanced framework presented in Chapter 4 has been applied to a context

where only specific quantities of interest are required. The goal of Chapter 5 was to extend

the enhanced framework to classification studies where coarse solutions suffice for some

of the computations when there is little doubt about the outcome. Nonetheless, to ensure

a precise classification, a multi-fidelity approach has been used where fine computations

are performed on decisive computations only and coarser simulations are used elsewhere.

This extension allows significant numerical benefits without compromising the integrity

of the classification outcome. Indeed, the illustration of the multi-fidelity method did not

lead to any classification errors. The resulting fragility curves are, therefore, not affected

by the coarse convergence of certain simulations. However, the additional numerical gain

compared with the enhanced method increases from a factor of three to a factor of four.

∗∗∗

The proposed framework paves the way for further developments that could significantly

improve the current methodology. Although the proposed method has yielded highly satis-

factory results, there is still significant room for improvement in several areas, namely the

solver, multi-query considerations, and the model’s aspects.

$ Enhancing the Numerical Solver

The number of modes generated during multi-query studies is always greater than the

number of SVD modes required to describe the set of solutions. There is, therefore, room

for improvement regarding the efficiency and frugality of the generation of PGD modes.

To improve this point, it would seem judicious to implement and test the effectiveness of

methods tried and tested in the literature for similar cases to those tackled in this work. The

Gramm-Schmidt algorithm used to ortho-normalise the spatial modes when a new PGD pair

is added could be changed to an (r)SVD. Indeed, doing so leads to orthonormal bases for

both the spatial and temporal modes, which proved to significantly decrease the number of

required PGD modes to reach a given convergence criterion [Giacoma et al., 2015; Alameddin
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et al., 2019]. With the same objective of reducing the number of PGD modes to be generated,

a combination of vibration and PGD modes could be used to start the LATIN-PGD scheme.

The number of vibration modes and the choice of the latter would require an in-depth study.

However, such modes would make it possible to replace PGD modes for the more global

corrections of the structure displacements, thereby further decreasing the number of PGD

modes to compute.

A second point of potential improvement pertains to the frequency solver. While the

introduction of artificial damping effectively mitigates the occurrence of Gibbs phenomena,

the damped function’s periodicity remains imperfect, as the decreasing exponential cannot

entirely nullify the function at the end of the temporal widow. Fourier continuation methods

[Lyon, 2011; Amlani & Bruno, 2016; Bruno et al., 2015] seem to offer a more elegant solution

to the problem of the appearance of Gibbs phenomena due to the non-periodicity of the

solution. Thus, comparing the artificial damping method proposed in this manuscript with

Fourier continuation methods seems appropriate. While slightly increasing the numerical

cost by adding a few imaginary points, these methods allow the FFT algorithm to be used on

non-periodic fields, effectively mitigating the occurrence of Gibbs phenomena. This concept

is used in the presented work for a posteriori frequency derivation. However, its usage for

solving partial differential equations in the frequency domain directly is appealing and has

proven very robust in the context of spatial differential equations.

This work has not addressed the numerical treatment associated with the computation of

the local but non-linear constitutive equations. The prohibitive cost of the local stage of the

LATIN method could be decreased using machine-learning or data-driven techniques. In

both cases, the idea would be to bypass the need to solve the behaviour equations in the first

stages of the LATIN scheme. Indeed, in the early stages of the method, the intermediate is far

from the converged solution. Thus, the precise computation of the expensive solutions of the

non-linear behaviour is wasteful. Conversely, using a rough approximation given by a trained

neural network or a data-driven approach such as [Ladevèze et al., 2019; Gerbaud et al., 2022]

for the first iterations allows to go through the iterative process at lower cost. The key idea

would be to toggle back on the computation of the exact solution of the behaviour equations

when the convergence criterion gets smaller. This way, the final solution satisfies both the

global and local equation of the problem and is indeed the solution to all the equations of the

problem. Doing so also ensures that even in cases where the machine learning approach fails

to give satisfactory results, the converged solution would still be suitable.

Finally, the non-linearities could be tackled more locally. The structure could be paved

with patches representing its details, and the PGD could be applied independently onto the

different patches so that local modes would describe specifically localised non-linearities.

Such an approach has been used jointly with a decomposition method to couple the different

patches [Néron et al., 2016]. From one query to another, the library of modes of the different

patches could also be reused in areas where similar non-linearities are expected. Such

an approach falls into the scope of local-global methods that have shown good results for

modelling localised phenomena that occur in cases of fatigue [Cardoso et al., 2018] or damage
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prediction [Nagaraj et al., 2021] for instance.

$ Areas for improvement in the multi-query framework

Figure 5.11 • Selection of multiple PS us-

ing the Grassmann distance

In a multi-query framework, improving the

initialisation of the PGD basis could involve in-

corporating PGD modes generated during mul-

tiple preceding computations rather than solely

relying on the PGD modes from the parent-

simulation. In this regard, the Grassmann dis-

tance between computations could be used to

reuse the PGD modes from more than one pre-

vious calculation by adding a distance threshold

`c . The initial PGD basis for the new simulations

would include the spatial modes from all previ-

ous computations within this distance from the

current calculation. Over the long term, in order

to make the most out of the different PGD basis

computed in a multi-query parametric context, relying on a bases interpolation method as

proposed in [Mosquera et al., 2019; Friderikos et al., 2022] for POD basis might lead to better

suited initial PGD basis, thus further decreasing the number of PGD modes to generate for

the current computation.

Moreover, in a parametric context where the number of simulations is not fixed, relying

on surrogate models and kriging methods coupled with the multi-fidelity framework detailed

in [Nachar et al., 2020] would allow decreasing the number of computations needed to build

the virtual chart, thereby decreasing the overall cost of the study.

Finally, the use of deep learning methods to interpolate the non-linear response of the

structure for a new loading after learning its response for a large number of previously

simulated loads could also be considered. This learned response could be used as a space-

time initialisation for the LATIN scheme to speed up the calculation of the solution for a new

load while ensuring that it satisfies the equations of the problem. In the case where only the

loading changes from one calculation to another, graph neural network methods have shown

good interpolation capacity for different loadings in a non-linear mechanics case [Hernandez

et al., 2022].

$ Perspectives related to the damage model

This study’s aim was not to assess damage phenomena but rather to develop and validate

a computational framework capable of efficiently handling numerous non-linear dynamics

calculations. It is worth noting that the damage model used in the work is inherently flawed

as it does not provide a convergence propriety regarding the mesh size. Conversely, non-
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local damage models appear more realistic and consistent with experimental results. Those

non-local models require solving additional equations and are computationally expensive.

However, they can be put under the form of a heat equation [Azinpour et al., 2018; Marconi,

2022]. Therefore, implementing such a method would be identical to solving a multi-physics

problem. The proposed methodology being based on the LATIN method, solving such a

coupled problem with a reduced-order model for both physics appears straightforward. It

has already been implemented in the case of standard multi-physics problems [Néron &

Ladevèze, 2010b]. The extension of the LATIN-PGD to the non-local damage model treated as

a coupled problem also appears appealing. We expect results in reducing the computational

cost for non-local problems similar to those obtained in the case of multi-physics problems.
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Appendix A
Frequency derivation

In order to ensure consistency in the integration and differentiation schemes throughout

the methodology, it is necessary to obtain the first and second derivatives of the temporal

field, denoted as f (t ), through the frequency domain. However, when the function values at

the boundaries of the temporal domain I are not equal, the non-periodicity of the function

between t = 0 and t = T can give rise to the occurrence of Gibbs phenomena. Therefore,

careful attention must be given to the approach employed for deriving these derivatives.

To address this issue, a technique is employed wherein the periodicity of the function is

restored by extending the temporal domain of study with a buffer zone, where the initial

and final values of the function are matched. This allows for a smoother transition and

re-establishes periodicity within the extended temporal domain, facilitating the utilisation of

Fourier analysis techniques. By following this procedure, the first and second derivatives of

the original temporal field f (t) can be accurately computed in the frequency domain and

subsequently transformed back to the time domain for further analysis while mitigating the

effects of the Gibbs phenomena.

1 Continuation method

The idea is based on the Fourier-based continuation method [Lyon, 2011; Amlani & Bruno,

2016; Bruno et al., 2015] that allows to artificially retrieve periodicity in cases where the target

function is not periodic.

To do so, the domain I = [0,T ] is extended to Ĩ = [0,T + a] where the zone [T,T + a] is

the buffer zone. The buffer zone is discretised in nb time steps which allow to interpolate a

matching function φb(t ) so thatφb

(
t ∈ [

T −k,T
])= f

(
t ∈ [

T −k,T
])

φb

(
t ∈ [

T +a,T +a +k
])= f

(
t ∈ [

0,k
]) (A.1)

The extended function φ(t ) on which derivation will be applied then reads
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φ(t ) =
 f (t ), if t ∈ [0,T ],

φb(t ), if t ∈ [T,T +a].
(A.2)

The resulting function exhibits periodicity, effectively mitigating the challenges arising

from the non-periodic nature of the initial function f (t). By introducing additional time

steps within the buffer zone, periodicity is attained, albeit with minimal interpolation points.

Consequently, this enables utilising the Fast Fourier Transform (FFT) technique without

encountering the Gibbs phenomenon near the temporal window boundaries. Moreover, the

computational overhead associated with incorporating the buffer zone remains reasonably

low, ensuring that the overall additional computational cost remains manageable.

2 Example

This section illustrates the continuation method for the derivation of the function

f (t ) = exp

(
−

(
10t −T

2T

)2
)

sin
(
2π f t

)
(A.3)

for the following set of parameters  f = 2Hz

T = 2.1s.
(A.4)

The continuation method is graphically explained in Figure A.1a, where the buffer zone is

shown in blue, the initial function is plotted in green, and the interpolation points are shown

in red. Figure A.1b shows the final extended function on which operations are performed.

(a) Graphical illustration of the method
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(b) Extended function φ (t )

Figure A.1 • Continuation based method

The method has been applied to compute the first derivative of the function defined in

Equation A.2, and the results are presented in Figure A.2. The first derivative obtained with
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the FFT is compared to the analytical derivative and the result given by a finite difference

scheme (FD). Figure A.2a plots the results while Figure A.2b compares the influence of the

number of time steps on the error of both methods compared to the analytical derivative.

The Fourier-based derivation gives much closer results to the analytical function than the FD

scheme.

(a) Plot of the first derivative and comparison of

the results

100 2500 5000
10

-4

10
-2

10
0

FD

FFT

(b) Error as a function of the number of time

steps

Figure A.2 • Comparison of Fourier and finite difference first order derivation
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Appendix B
ROMlab

ROMlab is an in-house code written in MATLABr language. It consists of a shared platform

for reduced-order model and LATIN-based methods implementation. Throughout the years,

the platform has been used as a demonstrator for new numerical tools, and its capabilities

have been extended so that a wide range of physical problems can now be solved using that

software.

1 History

The beginnings of ROMlab came from David Néron, and the development of the code has

since been maintained by researchers of the LMPS lab (former LMT).

A non-exhaustive list of the main and most recent contributors to ROMlab is given in

Figure B.1.

The numerical work and developments presented in this doctoral dissertation were

carried out in parallel with work on domain decomposition in magnetostatics [Ruda et al.,

2022] and on the strong coupling of different physics [Wurtzer et al., 2023]. The elementary

blocks and the new operators introduced have been designed in a standard way to manage

primal and dual fields generically in all these approaches, whatever the dimensions of the

fields treated, for example.

2 Principles

One of the objectives is to mutualise as many steps and tools as possible across all applications.

The pre-processing and post-processing stages are thus shared, regardless of the physics or

behaviour being addressed. The assembly operations of different operators share the same

core plug-ins as similarities between physics are utilised to minimise differentiating the code

for each user.

The data input involves providing a mesh generated from GMSH, along with the physics

and loading parameters and solver settings. Based on these data, the various operators are
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Figure B.1 • ROMlab contributors, reproduced from [Ruda, 2023]

constructed during the pre-processing stage. Depending on the physics and chosen solver,

the appropriate solving step is then executed, and the results can be exported in a file format

compatible with the Paraview software.

One of the key challenges in developing ROMlab, which is capable of handling quasi-

industrial cases, is paying particular attention to software optimisation, making the most

of current multi-threaded parallel architectures. The entire code is thus vectorised, notably

utilising the ‘einsum’ function developed in MATLABr by Stéphane Nachar, which enables

the use of Einstein summation.

3 Personal contributions

The work carried out during this doctoral thesis has expanded ROMlab’s capabilities. It can

now handle non-linear dynamics. The damage behaviour driven by plasticity, accounting for

crack closure effects as presented in Chapter 1, has also been implemented.
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As mentioned in Chapter 3, numerous material behaviours can seamlessly be used in the

local stage; therefore, the dynamics addition benefits from previously added behaviour in

addition to the newly added damage model used in this thesis.

A full-order model LATIN-based solver, i.e. without PGD, has also been implemented for

validation purposes. With either a frequency solver or Newmark schemes, ROMlab can now

solve non-linear dynamics problems with and without reduced-order model techniques.

A portion of matrix operations has been modernised using the new vectorised functions

in MATLABr, which enable simultaneous processing across multiple matrices. Similarly, the

utilisation of the MATLABr “decomposition” function is now systematic. This function creates

reusable matrix decompositions, consequently reducing the analysis time when performing

a Cholesky decomposition multiple times on the different operators, for instance.
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Industrial framework

This appendix presents the broader industrial framework for characterising failure prediction

in piping components. The doctoral dissertation focuses on the final stage, which consists in

predicting the damage evolution in the structure subjected to mechanical loading; however,

damage levels in the structure evolve throughout its entire life cycle. The nominal operation

of piping elements means they are subjected to high thermal stresses that fluctuate over time.

This stress causes thermal fatigue, which in turn damages the pipe structure. The industrial

framework must, therefore, account for prior damage existing before the occurrence of an

earthquake or any other mechanical solicitation applied to the structure. Thus, preliminary

high cycle fatigue (HCF) damage is assessed based on the thermo-mechanical loading due

to the nominal behaviour of the power plant. In this context, the weakly coupled thermo-

mechanical model employed is outlined, along with its numerical implementation. The

coupled thermo-mechanical behaviour of the structure is solved for one cycle, and the result

is post-processed to assess the fatigue damage over a given number of cycles Nc .

1 Isotropic thermo-mechanical formulation

A weak coupling is considered between thermal and mechanical aspects, where thermal

effects influence mechanical behaviour, while the reciprocal interaction is neglected.

First, the temperature evolution in the pipe is computed by solving the heat equation in

the domainΩ 

T = Td , ∀x ∈ ∂Ωth
1

T
(
x , t = 0

)= T0 (x) , ∀x ∈Ω
ρcṪ =−∇·q + rd ∀x ∈Ω
q ·n = jth ∀x ∈ ∂Ωth

2

q =−kth∇T, ∀x ∈Ω.

(C.1)

The ensuing temperature field is used to compute a thermal preload as a strain

εth =α1
(
T −T0

)
, (C.2)
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with k the conductivity of the material and α the dilatation parameter. When modelling the

pipe’s nominal operating condition, the mechanical equilibrium’s inertial terms are neglected.

The mechanical problem in weak form, therefore, becomes

u = ud , ∀x ∈ ∂Ω1

∇·σ+ fd = 0 ∀x ∈Ω
σn = Fd ∀x ∈ ∂Ω2

σ=K
(
ε−εth

) (C.3)

Tacking the mechanical loading to be zero, i.e.
ud = 0,

fd = 0,

Fd = 0,

(C.4)

the resulting stress solely corresponds to thermal stressσth , which can then be used to assess

the damage due to thermal fatigue using post-processing based on S-N curves.

2 Thermal damage assessment

The thermal stress σth derived from elastic computations is further analysed through the

use of Wöhler curves interpolation and HCF approaches, which provide a lifetime ratio

that quantifies damage. This approach yields a specific damage increment value for each

cycle, depending on the characteristics of the stress σth . Consequently, the provision of this

stress value at each integration point can be employed to assess the corresponding level of

thermal damage at various locations within the structure for a prescribed number of cycles

Nc . A harmonisation of this damage value as a lifetime ratio with the notion of damage in

continuum mechanics, used in the non-linear model presented in this manuscript, enables

the lifetime ratio under thermal loading of the structure to be converted into a pre-damage

value D0 that accounts for the ageing of the structure. The pre-damage value can be used

as an input of the non-linear solver, thus taking into account the nominal life cycles of

the structure when assessing its failure probability under mechanical input. The CEA has

studied the identification of the required parameters for the post-process stage and the

harmonisation process in the context of the NARSIS project.
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3 Fragility surfaces

Figure C.1 • Example of a fragility surface

It might be interesting to investigate the influ-

ence of the structure’s lifespan, i.e. the number

of nominal cycles Nc . To that aim, the number

of cycles can be considered a new dimension in

the fragility curves that become fragility surfaces.

In this configuration, the first dimension gives

the influence of the load on the probability of

failure. In contrast, the second dimension gives

information on the influence of the age of the

structure on its probability of failure for a given

load.

4 Overview of the framework

The industrial framework is graphically illustrated in Figure C.2.

Nuclear simulation

Thermal simulation

Quasi-static elsatic me-

chanical simulation
Fragility surface

Wöhler post process-

ing of the elastic stress

Enhanced LATIN solver

rd ,Td , jt h

εth
Nc

σth

D0 (x)

D
(
x , t

)

Nc

Data base

{
u(i )

d (t )
}

Figure C.2 • Flow chart of the industrial damage assessment framework
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Les méthodes de réduction de modèles offrent un moyen efficace de réduire le coût de calcul

associé aux larges simulations industrielles. Les méthodes a posteriori, telles que la POD,

reposent sur une phase offline comprenant des calculs non linéaires complets préalables

pour plusieurs jeux de paramètres [Chatterjee, 2000]. La base réduite construite à partir des

snapshots est ensuite utilisée dans la phase online pour trouver des solutions à faible coût

au problème non linéaire pour un nouvel ensemble de paramètres. L’automatisation de la

sélection des snapshots a été proposée dans la méthode de la Base Réduite [Maday et al., 2002]

qui s’appuie cependant toujours sur des calculs préalables possiblement coûteux. À l’inverse,

les méthodes de réduction de modèles dites a priori, telles que la PGD [Néron & Ladevèze,

2010a; Chinesta et al., 2011], évitent la phase hors ligne en construisant la base réduite à

la volée pendant les calculs. La PGD s’est révélée efficace pour les problèmes dynamiques

linéaires [Boucinha et al., 2014] et non linéaires [Germoso et al., 2016; Quaranta et al., 2019].

Plusieurs choix sont possibles pour prendre en compte une dépendance paramétrique du

problème avec la méthode PGD. D’une part, les études paramétriques peuvent inclure des

paramètres en tant que coordonnées additionnelles du modèle réduit [Chinesta et al., 2011;

Lu et al., 2018; Paillet et al., 2018], comme dans la méthode des éléments finis stochastiques

[Anders & Hori, 1999]. Cette approche ne nécessite pas de multiples appels au solveur, mais

un problème de plus grande dimension est construit. Cette approche nécessite également

des solveurs spécifiques pour chaque nouveau problème paramétrique. Un autre choix

consiste à séparer uniquement les variables espace-temps, laissant d’autres paramètres

éventuels en dehors du solveur et à s’appuyer sur une stratégie multi-query spécifique

pour gérer de manière optimale de multiples appels au solveur PGD espace-temps [Nachar

et al., 2020; Néron et al., 2015]. Laisser les paramètres supplémentaires en dehors de la

décomposition PGD permet de s’appuyer sur des solveurs PGD plus génériques, permettant

le développement de solveurs non intrusifs [Scanff et al., 2022]. La base espace-temps PGD

est construite explicitement pour le problème en cours. Par conséquent, la PGD garantit une

base pertinente pour le problème courant et élimine le besoin de coûteux calculs amonts et

de la sélection fastidieuse des snapshots [Tegtmeyer et al., 2017]. L’utilisation de la méthode

PGD nécessite de manier des solutions globales sur l’espace et le temps. Dans un contexte
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non linéaire, l’utilisation d’un solveur non-incrémentale est donc requise. Aussi, la méthode

LATIN [Ladevèze, 1999], solveur non-incrémental développé pour la résolution de problèmes

mécaniques non linéaires, offre un cadre pertinent pour l’utilisation de la méthode PGD en

cas de non linéarités. La méthode LATIN consiste en un schéma itératif au cours duquel la

solution est alternativement cherchée dans l’espace des solutions aux équations globales et

linéaires puis dans l’espace des solutions aux équations locales possiblement non linéaires.

La solution exacte vérifiant à la fois les équations locales et globales, se trouve à l’intersection

de ces deux espaces. Cette séparation des difficultés permet l’introduction naturelle de la

PGD lors de la résolution des équations globales linéaires. La méthode LATIN-PGD a été

appliquée à de nombreux contextes non linéaires, y compris pour l’évolution des dommages

des matériaux quasi-fragiles soumis à des chargements de fatigue quasi-statiques à faible et

grand nombre de cycles [Bhattacharyya et al., 2018b; Bhattacharyya et al., 2019] ou dans des

conditions dynamiques [Iturra, 2021; Daby-Seesaram et al., 2023]. Deux points spécifiques

ont amélioré la méthode LATIN-PGD dans le contexte multi-query pour des cas de variabilité

des matériaux. Premièrement, en s’appuyant sur son caractère non-incrémental, le schéma

itératif est initialisé avec la solution espace-temps d’un calcul précédent pour réduire le

nombre d’itérations nécessaires à la convergence. Deuxièmement, la base réduite générée

pour une simulation précédente est fournie à la nouvelle simulation comme dans le cadre

de la POD. Ainsi, l’effort de calcul pour évaluer les modes spatiaux à ajouter à la volée est

réduit dans un contexte paramétrique [Heyberger et al., 2012]. Certaines de ces propositions

pourraient être utilisées dans le cas de la variabilité des chargements, mais le fait que les

différentes simulations ne partagent pas la même admissibilité nécessite des développements

supplémentaires.

Le gain numérique apporté par les méthodes de réduction de modèles peut de plus être

couplé à la construction d’un méta-modèle pour réduire le nombre d’appels au solveur,

diminuant ainsi le coût numérique global de l’étude. De plus, dans un contexte où les so-

lutions complètes associées à chaque calcul ne sont pas utiles, mais où seules certaines

quantités d’intérêt sont nécessaires, les simulations intermédiaires peuvent être effectuées

avec un critère de convergence grossier. Cela est particulièrement pertinent pour les études

d’optimisation, par exemple. Dans un tel contexte, des méthodes de krigeage multi-fidélité

couplées à la PGD ont été employées avec succès pour une étude visco-plastique paramétrique

[Nachar et al., 2020]. Cependant, l’utilisation de telles méthodes nécessite que le problème

soit paramétré avec un nombre suffisamment faible de paramètres. Ces méthodes ne sont

donc pas directement applicables au problème abordé dans cette thèse, étant donné que

l’accent est mis sur la résolution de problèmes non paramétrés.

∗∗∗
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1. Méthode de réduction de modèle hybride temps fréquence

Cette thèse de doctorat présente un cadre multi-requête offrant une méthode efficace pour

estimer la probabilité de défaillance structurale dans des conditions de chargement incertaines.

L’étude a été initialement motivée par le cas du risque sismique dans le contexte de la

sûreté nucléaire, mais elle s’étend à diverses études nécessitant des calculs dynamiques non

linéaires multiples. L’objectif est de développer une méthode efficace lorsque chaque calcul

non linéaire est associé à un chargement fourni sous la forme d’un signal temporel indexé

non paramétré. Le nombre de calculs à effectuer est donc fixé et ne peut pas être réduit

pour atténuer le coût de l’étude. De plus, dans la suite, nous nous abstiendrons de nous

appuyer sur des connaissances préalables de toute paramétrisation de la charge, car le cadre

se veut utilisable de manière robuste dans des cas où une telle paramétrisation n’est pas

immédiatement disponible.

Plus précisément, ce travail propose un cadre composé d’un solveur de dynamique non

linéaire efficace associé à une nouvelle stratégie multi-query qui exploite les similitudes d’un

calcul à l’autre et offre une procédure robuste pour déterminer un chemin optimal à travers

l’espace des scénarios de chargement. Cette thèse est structurée en trois parties. La première

partie donne un aperçu de l’état de l’art des calculs dynamiques non linéaires, tandis que

la deuxième partie présente les nouveaux éléments au cœur de la méthodologie proposée.

Enfin, la troisième partie propose une application de cette méthodologie pour prédire la

probabilité de défaillance d’une structure soumise à des risques sismiques. Cette thèse de

doctorat comprend un total de cinq chapitres.

1 Méthode de réduction de modèle hybride temps fréquence

Dans le chapitre 3, un cadre hybride original LATIN-PGD a été proposé pour les matériaux

endommageables en dynamique. Les calculs liés à l’aspect dynamique sont effectués dans

le domaine fréquentiel tout en résolvant toujours le comportement non linéaire dans le

domaine temporel. Au cours de ce chapitre, la méthode hybride temps-fréquence couplée

à une résolution PGD des équations d’admissibilité est validée sur plusieurs géométries et

différents chargements. Il est important de noter que du fait des non-linéarité en jeux, des

déplacements résiduels sont attendus en fin de simulation, empêchant ainsi la structure

étudiée de revenir à son état initial. De fait la position finale de la structure diffère de sa

position initiale ce qui occurre l’apparition de phénomènes de Gibbs lors de la résolution

dans le domaine fréquentiel. Pour palier à ce problème, un problème auxiliaire basée sur

l’utilisation d’amortissement artificiel est employé comme étape intermédiaire de résolution

avant de retrouver par post-traitement la solution exacte initialement recherchée. Aussi, la

stratégie est robuste et s’adapte aux simulations pour lesquels l’état final diffère de l’état

initial, que ce soit dû à la présence de non-linéarités telles que la plasticité, ou à un faible

amortissement de la structure. Les résultats mettent également en évidence la grande ré-

ductibilité des problèmes de dynamique à basse fréquence avec un comportement ductile

endommageant. En effet, peu de modes PGD sont nécessaires pour représenter la solution

des différents problèmes abordés dans ce chapitre. Enfin, il est intéressant de noter quand
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dans un tel cas, l’utilisation de la PGD semble plus adaptée que l’usage des modes propres de

la structure dont la capacité à apporter des corrections locales est moins prononcée.

Ce chapitre présente donc une réponse partielle au problème général abordé dans cette

thèse en fournissant un solveur efficace permettant de diminuer le coût de chaque calcul

individuellement. Ce solveur tire parti à la fois des avantages apportés par la méthode

de réduction de modèles PGD et des bénéfices numériques apportés par la résolution des

équations dynamiques dans le domaine fréquentiel.

Afin de réduire davantage le coût numérique de l’étude multi-requête, il s’agit désormais

de construire une méthode propice à de telles études reposant sur les spécificités du solveur

choisi.

2 Cadre multi-requête proposé

Un cadre multi-query original pour la dynamique non linéaire est proposé dans le chapitre 4.

Ce cadre tire avec succès parti des similitudes entre les calculs pour réduire significativement

le coût de simulation d’une étude multi-requête. L’idée de ce chapitre est similaire à ce qui se

retrouve dans la littérature pour des problèmes dont la variabilité est matérielle. L’idée est de

s’appuyer sur le caractère non-incrémental de la LATIN pour venir initialiser le solveur itératif

avec une solution espace-temps convergée issue d’une solution précédente dont le résultat

est supposé proche du résultat attendu pour le calcul courant. Ainsi, le nombre d’itérations

nécessaires à la convergence du schéma itératif pour le calcul courant est réduit. Dans cette

thèse, cette idée a été étendue aux cas où la variabilité se trouve non plus dans le matériaux

mais dans le chargement. Il a donc fallu adapter la méthode afin de pouvoir tirer parti d’une

solution précédente calculée pour des conditions aux limites de type Dirichlet différentes

de celles appliquées pour la solution courante, ces deux solutions ne partageant donc plus

l’admissibilité. La méthode proposée est également pensée pour s’adapter à des cas pour

lesquels une paramétrisation explicite du problème n’est pas accessible. Aussi la façon de

choisir le calcul pertinent pour accélérer la simulation courante est basée sur un indicateur

de proximité entre la solution élastique associée au calcul courant et l’ensemble des solutions

associées aux calculs précédemment effectués. Enfin, les gain apportés par la méthode étant

directement lié aux calculs présents dans la bibliothèque de calculs précédemment réalisés,

l’ordre dans lequel sont chaînés les calculs influe significativement les résultats obtenus.

Une proposition d’automatisation du choix de séquence de calcul est donc énoncée visant à

rendre l’ensemble du cadre multi-query le plus robuste possible.

En résumé le cadre multi-query consiste en trois principes listés ci-après.

$ Principe I. Initialisation judicieuse de la solution espace-temps et de la base réduite

Ce premier principe permet de démarrer le schéma itératif plus près de la solution exacte,

réduisant ainsi l’erreur initiale et le nombre d’itérations nécessaires pour atteindre la conver-
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gence. L’initialisation de la base réduite permet d’éviter les étapes redondantes de la LATIN

qui seraient nécessaires au calcul de modes préexistants.

$ Principe II. Sélection d’une simulation parent pertinente

Le fait de s’appuyer sur des solutions élastiques pour trouver la simulation parent opti-

male permet de trouver de manière robuste un calcul préalable idéal pour initialiser le calcul

actuel. Cette approche s’appuie sur des connaissances mécaniques solides, plutôt que sur

des descriptions de chargement paramétrées par exemple, ce qui garantit la robustesse de la

méthode pour les signaux de chargement non paramétrés.

$ Principe III. Trouver une séquence de calcul optimale

Cette dernière étape permet de s’assurer qu’une simulation parent appropriée est trouvée

à travers l’ensemble des solutions antérieures, même au début de l’étude multi-requête,

lorsque peu de calculs ont encore été effectués. Cette étape repose sur l’usage d’un algorithme

génétique permettant de diminuer la distance cumulée totale entre toutes les simulations

effectuées dans l’ordre de la séquence trouvée.

3 Extension multi-fidélité

Le cadre présenté dans le chapitre 4 a été appliqué à un contexte où seules des quantités spé-

cifiques d’intérêt sont requises. L’objectif du chapitre 5 est d’étendre le cadre proposé à une

étude de classification où des solutions grossières suffisent pour certaines des simulations

pour lesquelles une légère erreur sur le résultat n’aurait aucun impact. Afin de tout de même

assurer une classification précise, une approche multi-fidélité a été utilisée, dans laquelle des

calculs fins sont effectués uniquement pour des simulations décisives et des simulations plus

grossières sont utilisées ailleurs. Cette extension est directe grâce aux outils développés dans

le chapitre 4 et permet d’obtenir d’importants avantages numériques sans compromettre

l’intégrité du résultat de classification.
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